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Abstract— Providing formal safety and performance guaran-
tees for autonomous systems is becoming increasingly impor-
tant. Hamilton-Jacobi (HJ) reachability analysis is a popular
formal verification tool for providing these guarantees, since
it can handle general nonlinear system dynamics, bounded
adversarial system disturbances, and state and input con-
straints. However, it involves solving a PDE, whose computa-
tional and memory complexity scales exponentially with respect
to the state dimensionality, making its direct use on large-
scale systems intractable. A recently proposed method called
DeepReach overcomes this challenge by leveraging a sinusoidal
neural PDE solver for high-dimensional reachability problems,
whose computational requirements scale with the complexity
of the underlying reachable tube rather than the state space
dimension. Unfortunately, neural networks can make errors
and thus the computed solution may not be safe, which falls
short of achieving our overarching goal to provide formal safety
assurances. In this work, we propose a method to compute an
error bound for the DeepReach solution. This error bound
can then be used for reachable tube correction, resulting in
a safe approximation of the true reachable tube. We also
propose a scenario-based optimization approach to compute
a probabilistic bound on this error correction for general
nonlinear dynamical systems. We demonstrate the efficacy
of the proposed approach in obtaining probabilistically safe
reachable tubes for high-dimensional rocket-landing and multi-
vehicle collision-avoidance problems.

I. INTRODUCTION

It is becoming increasingly important that we can design
provably safe controllers for autonomous systems. Hamilton-
Jacobi (HJ) reachability analysis provides a powerful frame-
work to design such controllers for general nonlinear dy-
namical systems [1], [2]. In reachability analysis, the safe
states for the system are characterized through the Backward
Reachable Tube (BRT) of the system. This is the set of states
from which trajectories will eventually reach some given
target set despite the best control effort. Thus, if the target set
represents the set of undesirable states, the BRT represents
unsafe states for the system and should be avoided. Along
with the BRT, reachability analysis also provides a safety
controller to keep the system outside the BRT.

Traditionally, the BRT computation in HJ reachability
is formulated as an optimal control problem. The BRT
can then be obtained as a sub-zero level solution of the
corresponding value function. Obtaining the value function
requires solving a partial differential equation (PDE) over
a state-space grid, resulting in an exponentially scaling
computation complexity with the number of states [3]. To
overcome this challenge, a variety of solutions have been
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proposed that trade off between the class of dynamics they
can handle, the approximation quality of the BRT, and the
required computation. These include specialized methods
for linear and affine dynamics [4]–[12], polynominal dy-
namics [13]–[16], monotonic dynamics [17], and convex
dynamics [18] (see [3], [19] for a survey). Owing to the
success of deep learning, there has also been a surge of
interest in approximating high-dimensional BRTs [20]–[24]
and optimal controllers [25] through deep neural networks
(DNN). Building upon this line of work, the authors in [19]
have proposed DeepReach – a toolbox that leverages recent
advances in neural implicit representations and neural PDE
solvers to compute a value function and a safety controller
for high-dimensional systems. Compared to the aforemen-
tioned methods, DeepReach can handle general nonlinear
dynamics, the presence of exogenous disturbances, as well
as state and input constraints during the BRT computation.
However, even if we can now obtain an approximate BRT
for high-dimensional systems, it is limited in usefulness by
its approximate nature. In particular, the learned BRT can be
overly optimistic; thus, no formal safety guarantees can be
provided on the obtained BRT and controller.

In this work, our goal is to compute a BRT and a safety
controller for high-dimensional systems with provable safety
guarantees. Specifically, we build upon DeepReach and
propose a verification method to provide safety assurances
on the DeepReach solution. The key insight of our work
is to rely on the consistency between the learned value
function and the implicit safety controller induced by this
value function to compute a uniform correction bound for
the value function. Essentially, if a particular state is outside
the BRT (i.e., “safe” as per the learned value function), then
starting from this state, the corresponding safety controller
should keep the system trajectory outside the target set at
all times (i.e., the state should also be “safe” under the
prescribed controller). Otherwise, we cannot ensure safety
of this state, and the value function should be corrected such
that this state is inside the BRT. Once all such states have
been added to the learned BRT, we have obtained a provably
safe approximation of the true BRT.

We show that the computation of the correction bound
can be posed as an optimization problem. However, in
general, it is challenging to tractably compute this bound,
since the learned value function can be highly nonlinear and
hard to optimize. We propose a scenario-based optimization
method to compute this correction. Scenario optimization is
a sampling-based method to solve semi-infinite optimization
problems, and has been widely used for system and control
design [26]–[29]. The proposed method is not restricted
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to a specific class of system dynamics or value functions.
Given that the value function correction is obtained via
randomization and, hence, is a random quantity, we provide
probabilistic guarantees on the safety of the recovered BRT.
However, this confidence is a design parameter and can be
chosen as close to 1 as desired (within a simulation budget).

To summarize, the key contributions of this paper are:
• an error correction mechanism for DeepReach that

results in a provably safe BRT and safety controller
for general dynamical systems;

• a practical method to compute a probabilistic bound on
this error correction that is not restricted to a specific
class of systems, resulting in a tractable computation of
probabilistically safe reachable tubes; and

• a demonstration of the proposed approach for various
dynamical systems, inspired by rocket landing and
multi-vehicle collision avoidance problems.

II. PROBLEM SETUP

Consider a dynamical system with state x ∈ X ⊆ Rn,
control u ∈ U , and dynamics ẋ = f(x, u) governing how x
evolves over time until a final time T . Let ξux,t(τ) denote the
state achieved at time τ ∈ [t, T ] by starting at initial state
x and time t and applying control u(·) over [t, τ ]. Let L
represent a target set of states that the agent wants to either
reach (e.g. goal states) or entirely avoid (e.g. obstacles).
Running example: Dubins3D Avoid. As a running example,
consider a simple low-dimensional system in the literature
known as Dubins3D. It involves a car with position (px, py),
heading θ, velocity v, and steering control u1 ∈ [umin, umax].
The car’s state x evolves according to

ṗx = v cos θ, ṗy = v sin θ, θ̇ = u1

It wants to avoid a circle with radius R centered at the origin.
Thus, we define the target set L of this system to be:

L = {x :
√

p2x + p2y ≤ R}

We use Dubins3D as a benchmark because it is tractable for
traditional reachability methods to compute a solution for,
and we can thus compare our results with a ground truth.
In Section V, we present high-dimensional problems which
traditional methods struggle with.

In this setting, we are interested in computing the system’s
initial-time Backward Reachable Tube, which we denote as
BRT. We define BRT as the set of all initial states in X
from which the agent will eventually reach L within the
time horizon [0, T ], despite best control efforts:

BRT = {x : x ∈ X,∀u(·),∃τ ∈ [0, T ], ξux,0(τ) ∈ L} (1)

When L represents unsafe states for the system, staying
outside of BRT is desirable. When L instead represents the
states that the agent wants to reach (e.g., a goal set), BRT
is defined as the set of all initial states in X from which the
agent, acting optimally, can eventually reach L within [0, T ].
Thus, staying within BRT is desirable.

Our goal in this work is to compute a provable approxi-
mation of the safe set. Specifically, we want to compute an

approximation Ŝ such that Ŝ ⊆ BRTC (Ŝ ⊆ BRT when
L represents goal states). We are especially interested in
settings where the system is high-dimensional, with which
current state-of-the-art reachability methods struggle.

III. BACKGROUND: HAMILTON-JACOBI (HJ)
REACHABILITY AND DEEPREACH

In this work, we build upon Hamilton-Jacobi reachability
analysis to compute an approximation of the safe set. Here,
we provide a quick overview of Hamilton-Jacobi reachability
analysis and a specific toolbox to compute high-dimensional
reachable sets, DeepReach.

A. Hamilton-Jacobi (HJ) Reachability.

In HJ reachabilty, the computation of BRT is formulated
as an optimal control problem. We will explain it in the
context of L being a set of undesirable states. In the end,
we will comment on the case where L represents a set of
desirable states.

To compute BRT, we first define a target function l(x)
such that the sub-zero level of l(x) yields L:

L = {x : l(x) ≤ 0} (2)

l(x) is commonly a signed distance function to L. For
example, we can choose l(x) =

√
p2x + p2y − R for our

Dubins3D Avoid running example.
Next, we define the cost function of a state corresponding

to some policy u(·) to be the minimum of l(x) over its
trajectory: Ju(·)(x, t) = min

τ∈[t,T ]
l(ξux,t(τ)). (3)

Since the system wants to avoid L, our goal is to maximize
Ju(·)(x, t). Thus, the value function corresponding to this
optimal control problem is:

V (x, t) = sup
u(·)

Ju(·)(x, t). (4)

By defining our optimal control problem in this way, we
can recover BRT using the value function. In particular, the
value function being sub-zero implies that the target function
is sub-zero somewhere along the optimal trajectory, or in
other words, that the system has reached L. Thus, BRT is
given as the sub-zero level set of the value function at the
initial time:

BRT = {x : x ∈ X,V (x, 0) ≤ 0} (5)

The value function in Equation (4) can be computed using
dynamic programming, resulting in the following final value
Hamilton-Jacobi-Bellman Variational Inequality (HJB-VI):

min
{
DtV (x, t) +H(x, t), l(x)− V (x, t)

}
= 0, (6)

with the terminal value function V (x, T ) = l(x). Dt and ∇
represent the time and spatial gradients of the value function.
H is the Hamiltonian that encodes the role of dynamics and
the optimal control.

H(x, t) = max
u

⟨∇V (x, t), f(x, u)⟩. (7)

The value function in Equation (4) induces the optimal
safety controller:

u∗(x, t) = argmax
u

⟨∇V (x, t), f(x, u)⟩. (8)



Intuitively, the safety controller aligns the system dynamics
in the direction of the value function’s gradient, thus steering
the system towards higher-value states.

We have just explained the case where L represents a set
of undesirable states. When the system instead wants to reach
L, an infimum is used instead of a supremum in Equation
(4). The control wants to reach L, hence there is a minimum
instead of a maximum in Equation (7) and Equation (8).

Traditionally, the value function is computed by solving
the HJB-VI over a discretized grid in the state space. Un-
fortunately, doing so involves computation whose memory
and time complexity scales exponentially with respect to
the system dimensionality, making these methods practi-
cally intractable for high-dimensional systems, such as those
beyond 5D. Fortunately, a recent deep learning approach,
DeepReach, has been proposed to enable Hamilton-Jacobi
reachability for high-dimensional systems.

B. DeepReach Approximate Solutions.

Instead of solving the HJB-VI over a grid, DeepReach
represents the value function as a sinusoidal deep neural net-
work (DNN) to learn a parameterized approximation of the
value function [19]. Thus, memory and complexity require-
ments for training scale with the value function complexity
rather than the grid resolution. To train the DNN, DeepReach
uses self-supervision on the HJB-VI itself. Ultimately, it
takes as input a state x and time t, and it outputs a learned
value Ṽ (x, t). Ṽ (x, t) also induces a corresponding policy
π̃(x, t). We refer interested readers to [19] for further details.

The learned Ṽ (x, t) from DeepReach can be used to
obtain a BRT as in Equation (5), but it will only be as
accurate as Ṽ (x, t). Unfortunately, like any learning method,
Ṽ (x, t) can deviate substantially from the true V (x, t).

Our goal is to recover the biggest safe set Ŝ using Ṽ (x, t)
that we can (probabilistically) guarantee to be fully contained
within the true safe set. Although we work with DeepReach
solutions in particular for this problem setup, our proposed
approach in Section IV can verify any general Ṽ (x, t)
and π̃(x, t), regardless of whether DeepReach, a level-set
method, or some other tool is used to obtain them.

IV. APPROACH

Our approach is to apply a minimal error correction to
Ṽ (x, t) such that the corrected value function can be used to
extract a safe set. We will explain our approach in the context
of L being a set of undesirable states. In the end of each
subsection, we will comment on the case where L represents
a set of desirable states. In Section IV-A, we propose an error
metric for correcting the value function. In Section IV-B, we
propose a practical method to compute a probabilistic bound
on this error metric through scenario optimization.

A. Error Metric

We propose a new error metric δṼ,π̃ for the value function
correction. It is defined as the maximum learned value of an
empirically unsafe initial state under the induced policy π̃:

δṼ,π̃ := max
x∈X
{Ṽ (x, 0) : Jπ̃(x, 0) ≤ 0}, (9)

where Jπ̃(x, 0) is the cost function associated with the
trajectory obtained by using the policy π̃(x, t) from an initial
state x and initial time t = 0 until T (see Equation (3)). Here
on, we use δ as a shorthand for δṼ,π̃ for brevity purposes.

Intuitively, δ finds the tightest level of the learned value
function that separates the states that are safe under the
induced policy π̃(x, t) from the ones that are not. Thus,
any initial state within the super-δ level set of Ṽ (x, 0) is
guaranteed to be safe under the (possibly sub-optimal) policy
π̃(x, t). Lemma 1 formalizes this claim.

Lemma 1: If we compute S̃ as:

S̃ = {x ∈ X : Ṽ (x, 0) > δ} (10)

then S̃ ⊆ BRTC .
The proof for Lemma 1 is in Appendix-A of the extended

version of this article [30]. Intuitively, Lemma 1 states that if
we could exactly compute δ, then we can recover a S̃ that is
guaranteed to be a subset of the true safe set. Furthermore, it
is clear that, by definition, δ is the smallest (uniform) value
adjustment required on Ṽ (x, 0) to guarantee its safety. Thus,
S̃ is the largest safe set we can recover from the learned value
function by such a uniform error correction procedure.

Unfortunately, computing δ is a challenging optimization
problem, since both the value function and the cost function
in the metric definition (9) are typically non-convex functions
of x. In the next section, we propose a scenario-based
optimization approach to compute a high-confidence bound
on δ and thereby generate a high-confidence safe set.

Remark 1: We assume there exists an unsafe state for the
metric definition (9). Otherwise, define δṼ,π̃ trivially as −∞.

So far, we have discussed an error correction metric for the
case where L represents a set of undesirable states. When
L represents a set of desirable states, we use a minimum
instead of a maximum and flip the cost inequality in the
metric definition (9). To recover the safe set, we extract the
sub-δ level set of the value function in Equation (10).

B. Scenario Optimization Verification Method

We will compute a high-confidence bound on δ by uti-
lizing a random sampling procedure referred to as scenario
optimization in the systems and control design literature [29].
The Scenario Optimization Verification Method to compute
an approximation δ̂ is summarized in Algorithm 1.

At a high-level, Algorithm 1 computes a converging se-
quence of δi that approximates δ via random sampling until
we no longer find any safety violations or reach a maximum
number of iterations, M . Specifically, at each iteration i, we
randomly sample N initial states within the super-δi level
set of Ṽ (Line 3) using rejection sampling and compute the
costs of associated trajectories Jπ̃(x, 0) under π̃(x, t) as the
controller (Equation (3)). We next compute the maximum
learned value among the states that violate safety and use
that as the new estimate of δ (Line 5)), essentially discarding
a level region of Ṽ (x, 0) that is empirically unsafe under π̃.
Thus, with each iteration, we obtain a tighter approximation
of δ and terminate when no more safety violations are found
or a maximum number of iterations is achieved.



Algorithm 1: Scenario Optimization Verification

Require: X , N , M , Ṽ (x, 0), Jπ̃(x, 0)
1: δ0 ← −∞
2: for i = 0, 1, . . . ,M − 1 do
3: Di ← Sample N states IID from

{x : x ∈ X, Ṽ (x, 0) > δi}
4: if ∃x ∈ Di : Jπ̃(x, 0) ≤ 0 then
5: δi ← maxx∈Di

{Ṽ (x, 0) : Jπ̃(x, 0) ≤ 0}
6: else
7: break
8: end if
9: end for

10: return δ̂ := δi

While Algorithm 1 is simple to understand and execute,
scenario optimization provides a formal guarantee for bound-
ing δ with δ̂ when the algorithm terminates prior to reaching
the maximum number of iterations. Thus, we can use the
approximated δ̂ instead of δ to compute an approximate safe
set Ŝ similar to the one defined in Lemma 1:

Ŝ = {x : x ∈ X, Ṽ (x, 0) > δ̂} (11)

Crucially, we can make a formal probabilistic safety guar-
antee for Ŝ. This is summarized in Theorem 1 and proven
in Appendix-C of the extended version of this article [30].

Theorem 1 (Scenario Optimization Verification Theorem):
Select a violation parameter ϵ ∈ (0, 1) and a confidence
parameter β ∈ (0, 1). Pick N such that

N ≥ 2

ϵ

(
ln

1

β
+ 1

)
(12)

Suppose Algorithm 1 converges, then with probability at
least 1−β, the recovered safe set Ŝ in Equation (11) satisfies:

P
x∈Ŝ

(V (x, 0) ≤ 0) ≤ ϵ □ (13)

In practice, we find that the algorithm converges within
3-4 iterations. Intuitively, the higher the quality of the value
function approximation, the faster the convergence of δi.

Disregarding the confidence parameter β for a moment,
Theorem 1 states that the volume of the unsafe states within
Ŝ is smaller than or equal to the prescribed ϵ value, as long
as we sample enough states to satisfy Inequality (12) during
the computation of δ̂. As ϵ approaches 0, the number of
safety violations in the recovered safe set also approaches 0.
In turn, the simulation effort grows unbounded since N is
inversely proportional to ϵ.

To interpret the confidence parameter β, note that Ŝ is a
random variable that depends on a randomly sampled set
of initial states. It may be the case that we just happen
to draw a poorly representative sample, in which case the
ϵ bound does not hold. β controls the probability of this
adverse event happening, which regards the correctness of
the final guarantee in Equation (13). Fortunately, N only
grows logarithmically with 1

β , so β can be chosen to be an
extremely small value such as 10−12. 1− β should then be
so close to 1 that it does not have any practical importance.

When L represents a set of desirable states, we initialize
δ0 to be ∞ instead of −∞, flip the inequalities, and take
a minimum instead of a maximum in Algorithm 1. We flip
the value inequalities in Equation (11) and Equation (13).

Remark 2: Note that when Algorithm 1 does not con-
verge, scenario optimization can still be used to bound δ.
However, the safety guarantees are more involved. We defer
a detailed investigation of these guarantees to future work.
Running example: Dubins3D Avoid. We now demon-
strate the Scenario Optimization Verification method on the
Dubins3D Avoid running example introduced in Section
II. We choose system parameters v = 0.6m/s, umin =
−1.1rad/s, umax = 1.1rad/s,R = 0.25m, and use Deep-
Reach to learn the system’s value function. The used neural
network parameters and architecture are the same as in the
DeepReach paper [19], i.e., a DNN with 3 hidden layers and
512 neurons in each layer.

For this first example, we purposefully sabotage the train-
ing of DeepReach by permitting it to train for only 8,000
epochs, far less than 100K epochs used in the DeepReach
paper. We do this to illustrate our method’s utility even with
low-quality learned solutions. We apply our method to a
well-trained DeepReach solution in Section V-A.

The overall training took less than 30 minutes on an
NVIDIA GeForce RTX 3090Ti. We execute our verification
approach choosing β = 10−16, ϵ = 10−3, resulting in an
N = 75683 as per Theorem 1. Thus, we will be 1− 10−16

confident that at least 1− 10−3 of our recovered set will be
provably safe. Algorithm 1 converges in 4 iterations in this
case, resulting in a δ̂ = 0.3728. Slices of the trained BRT
(yellow), the recovered BRT (blue), and the ground truth
BRT boundary (black) are shown in Figure 1. The ground
truth is computed by a state-of-the-art PDE solver, Level Set
Toolbox (LST) [31], which computes the value function over
a discrete grid of size 101× 101× 101.

Fig. 1: Dubins3D Avoid: Slices of the trained, recovered, and ground truth
border BRTs for three values of θ from a sabotaged DeepReach solution.
The recovered BRT completely encompasses the ground truth BRT and
provides a probabilistically safe approximation of the safe set.

As evident from the figure, the recovered BRT slices
completely encompass the true unsafe states (the blue region
encompasses the states within the black boundary). Hence,
the complement of the recovered BRT is safe, as we expect
based on Theorem 1. In the rightmost slice, observe that
the trained BRT is smaller than the ground truth BRT and
is thus unsafe as it is. Our verification approach correctly
expands the trained BRT past the ground truth boundary,
ensuring safety. Validation by sampling 1M states within the
recovered safe set reveals a violation rate of 3×10−6 << ϵ.



Note that the trained solution’s safety violations are con-
centrated near θ = π. It is likely these errors which are
responsible for the large expansion of the recovered BRT
even for slices that are almost accurate (left and middle slices
in Figure 1). This is because our method expands the BRT
uniformly. However, too much expansion is undesirable,
since we want to recover as much of the safe set as possible.

One way to overcome this challenge is to apply refined
error correction to Ṽ (x, t) by independently verifying sepa-
rate regions of the states-space (i.e., separately consider each
region as our X). This allows us to recover sets with the
same safety guarantee but expanded differently depending
on their own region’s error. However, this method’s efficacy
depends heavily on the choice of sub-regions, which are
hard to prespecify, especially for high-dimensional systems.
Instead, we can resort to a data-driven approach.

Specifically, we trained a simple multilayer perceptron
(MLP) on 1M randomly sampled initial states and their em-
pirical safety violation costs (the training took an hour on a
standard GPU). Even though the predictor may be inaccurate
(after all, predicting the safe set is the original challenging
problem), we hypothesize that it will have learned some-
thing useful enough about the general distribution of errors
throughout the state space. We divided the output of the
MLP in 10 bins, each corresponding to a different range of
empirical cost. Thus, we expect the last bin to correspond to
the states with maximal safety violations (in this case, that
will correspond to states with θ = π). We next ran Algorithm
1 independently for each bin to compute an error correction.
The corresponding results are shown in Figure 2. As evident,
we get a much tighter approximation of the safe set near the
slices that have small errors, allowing us to recover a much
bigger safe set overall. In this case, the recovered safe set
volume increased by 35%.

Fig. 2: Dubins3D Avoid: Slices of the trained, recovered, and ground truth
border BRTs for three values of θ from a sabotaged DeepReach solution
when recovery is refined by MLP binning. The recovered BRT completely
encompasses the ground truth BRT and provides a probabilistically safe
approximation of the safe set that is larger than when binning is not used.

As discussed earlier, the performance improvement of this
approach depends heavily on the selection of subregions. We
defer this to future work, and for the rest of this paper, we
only focus on uniform value function correction.

V. CASE STUDIES

We will evaluate our approach on various reachability
problems. First, we show results for the avoid version and the
reach version of the low-dimensional Dubins3D system for
which we have a ground truth BRT available for comparison.

Next, we recover safe sets for a 9D multivehicle collision
avoidance problem and for a 6D rocket landing problem,
with which traditional methods struggle. Like our running
example, we use β = 10−16, ϵ = 10−3, N = 75683.

A. Dubins3D Avoid

In Figure 3, we show the results of applying our method
to a well-trained DeepReach solution for the same Dubins3D
Avoid system as in the running example in Section IV. The
solution is trained to consider the periodicity of θ and for
100K, instead of 8K, epochs. The proposed algorithm results
in a very small δ̂ = −0.0016. Interestingly, the fact that δ̂ <
0 indicates that the learned value function is conservative.
Our method shrinks the trained BRT to recover a larger safe
set. Validation by sampling 1M states within the recovered
safe set reveals a violation rate of 3.2× 10−5 << ϵ.

The fact that a much smaller error correction is found for
the trained solution shown in Figure 3 than the one in Figure
1 indicates it is of a much higher quality. This illustrates how
the error correction metric δ can also be used to evaluate
the quality of different approximate value function solutions.
For example, we can evaluate the relative performance of
different DNN hyperparameters, which is especially helpful
when the ground truth BRT is not available for comparison.

Fig. 3: Dubins3D Avoid: Slices of the trained, recovered, and ground truth
border BRTs for three values of θ from a well-trained DeepReach solution.
The trained BRT completely encompasses the recovered BRT, so we plot
the recovered BRT border on top for visualization purposes.

B. Dubins3D Reach

In Figure 4, we show the results of applying our method
to a DeepReach solution trained with the same scheme as
for the Dubins3D Avoid solution in Section V-A, but for the
reach version. That is, L is now a set of desirable states,
so a safe approximate BRT should be fully contained by the
true BRT. The trained BRT is just barely crossing the ground
truth boundary, and the proposed method cuts it down to just
behind the boundary, ensuring system safety.

Fig. 4: Dubins3D Reach: Slices of the trained, recovered, and ground truth
border BRTs for three values of θ from a well-trained DeepReach solution.
The recovered BRT is correctly a subset of the ground truth BRT.



C. Multivehicle Collision Avoidance

We now consider a 9D collision avoidance system involv-
ing 3 independent Dubins3D cars. The ith car has position
(pxi, pyi), heading θi, velocity v, and steering control ui ∈
[umin, umax]. The dynamics of vehicle i are given as:

ṗxi = v cos θi, ṗyi = v sin θi, θ̇i = ui

The (undesirable) target set is given by the states where any
of the vehicle pairs is in collision:

L = {x : min{d(Q1, Q2), d(Q1, Q3), d(Q2, Q3)} ≤ R}

where d(Qi, Qj) is the distance between cars i, j. We choose
v = 0.6, umin = −1.1, umax = 1.1, R = 0.25 for our case
study. The results of applying our method to a DeepReach
solution are shown in Figure 5.

Fig. 5: Multivehicle Collision Avoidance: Slices of the trained and recovered
BRTs for three values of θ1 from a DeepReach solution.

This high-dimensional example is typically difficult to
compute with traditional methods, yet here we demonstrate
successful recovery of a safe set with formal safety guaran-
tees. While the recovery preserves much of the safe set that
is learned, a significant amount is pruned off. The percent
reduction in safe set size (calculated from 1M samples) is
much larger in this example (26%) than for the Dubins3D
solutions in Section V-A (0%) and Section V-B (10%),
suggesting that the learned value function is more inaccurate
for higher dimensional systems.

To validate safety of the recovered BRT, in Figure 6,
we plot the minimum pairwise distance between vehicles
along trajectories spawning from states sampled within the
trained and recovered safe sets. Note that the trained safe set
contains states which result in a collision, as shown by the
mass to the left of the dotted line representing the collision
distance. After verification, the recovered safe set shows
no such mass. Validation by sampling 1M samples in the
recovered safe set reveals a violation rate of 5×10−6 << ϵ.

D. Rocket Landing

Consider a 6D rocket landing system with position
(px, py), heading θ, velocity (vx, vy), angular velocity ω,
and torque controls τ1, τ2 ∈ [−250, 250].
The dynamics are:

ṗx = vx, ṗy = vy, θ̇ = ω, ω̇ = 0.3τ1,

v̇x = τ1 cos θ − τ2 sin θ, v̇y = τ1 sin θ + τ2 cos θ − g,

where g = 9.81 is acceleration due to gravity. The target set
is the set of states where the rocket reaches a rectangular

Fig. 6: Multivehicle Collision Avoidance: Histogram of the minimum
pairwise spare distance between vehicles along trajectories which spawn
from states sampled within the trained and recovered safe sets. The collision
distance is indicated by the dotted line.

landing zone of side length 20 centered at the origin:

L = {x : |px| < 20.0, py < 20.0}
In Figure 7, we show the results of applying our method

to a DeepReach solution. We also plot the trajectories
emanating from 20 randomly sampled initial states within
the recovered safe set, demonstrating that they do indeed
reach the target set (the green region) by following the
induced policy. Validation by sampling 1M states within the
recovered safe set reveals a violation rate of 5×10−6 << ϵ.

Fig. 7: Rocket Landing: Slices of the trained and recovered BRTs for three
values of vy from a DeepReach solution. The system trajectories safely
reach the target set (green) from the initial states within the recovered BRT.

VI. DISCUSSION AND FUTURE WORK

In this work, we present an approach to compute an error
bound for DeepReach solutions to recover a provably safe
approximation of the true reachable tube. We also propose
a practical method to compute a probabilistic bound on this
error correction that is not restricted to a specific class of
systems. This allows us to utilize the power of learning-based
reachability methods to provide probabilistic safety assur-
ances for high-dimensional dynamical systems. We apply our
method to obtain probabilistically safe reachable tubes for
high-dimensional rocket-landing and multi-vehicle collision-
avoidance problems which traditional methods struggle with.

In the future, we will explore a more refined approach
to error correction (as opposed to a uniform correction), as
discussed briefly in the end of Section IV. Other directions
include considering worst-case disturbances in the system
dynamics and using the verification approaches proposed
here for a targeted refinement of DeepReach solutions.
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APPENDIX

A. Proof of Lemma 1

Proof: Assume for a contradiction that we compute S̃
as in Equation (10) and that

S̃ ̸⊆ BRTC (14)

which implies

∃x
′
: x

′
∈ S̃, x

′
̸∈ BRTC (15)

x
′ ∈ S̃ implies that

Ṽ (x
′
, 0) > δ (16)

by Equation (10).
On the other hand, x

′ ̸∈ BRTC implies that V (x
′
, 0) ≤ 0.

We know that ∀(x, t), Jπ̃(x, t) ≤ V (x, t) from Equation (4).
Thus, Jπ̃(x

′
, 0) ≤ V (x

′
, 0) ≤ 0. Then

Ṽ (x
′
, 0) ≤ δ (17)

by Equation (9).
We have found the contradiction that Ṽ (x

′
, 0) > δ and

Ṽ (x
′
, 0) ≤ δ. Thus, our assumption must be false, and it

must be true that if we compute S̃ as in Equation (10), then
S̃ ⊆ BRTC .

To prove the equivalent of Lemma 1 but in the case when
L represents a set of desirable states, we use BRT instead
of BRTC and flip the value and cost inequalities.

B. Lemma 2

Lemma 2: Select a violation parameter ϵ ∈ (0, 1) and a
confidence parameter β ∈ (0, 1). Pick N such that

N ≥ 2

ϵ

(
ln

1

β
+ 1

)
(18)

Then, with probability at least 1 − β, the solution δ̂ to Al-
gorithm 1 executed with N satisfies the following condition.

P
{x:x∈X,Ṽ (x,0)>δ̂}

((
Ṽ (x, 0) : Jπ̃(x, 0) ≤ 0

)
> δ̂

)
≤ ϵ (19)

Proof: Lemma 2 follows from Theorem 1 in Scenario
Optimization [29]. To use the theorem, we need to prove the
following conditions:

1) computing δ can be converted into a standard Scenario
Optimization problem

2) Algorithm 1 obtains δ̂ by sampling i.i.d from the
same space that δ is optimized over, X , but with a
probability distribution that is uniform over {x : x ∈
X, Ṽ (x, 0) > δ̂}

δ can be formalized as the following optimization problem:

min g

s.t. ∀x ∈ X,
(
Ṽ (x, 0) : Jπ̃(x, 0) ≤ 0

)
≤ g

This is a semi-infinite optimization problem where the
constraints are linear, and thus convex, in the optimization
variable g for any given x. Thus, Lemma 2 follows from
Theorem 1 in Scenario Optimization [29] by replacing c by
1, γ by g, ∆ by the state space of interest X , and f by(
Ṽ (x, 0) : Jπ̃(x, 0) ≤ 0

)
− g. To use Theorem 1, we also

require that i.i.d samples are chosen according to the uniform

distribution over {x : x ∈ X, Ṽ (x, t) > δ̂}. This can be
proven by observing that, in Algorithm 1, the last iteration
of the while loop samples x randomly and independently
from {x : x ∈ X, Ṽ (x, t) > δ̂} where δ̂ is exactly the final
metric returned. Importantly, the algorithm does not update
δ̂ in the final loop (since the loop subsequently breaks).

To prove the equivalent of Lemma 2 but in the case when
L represents a set of desirable states, we flip the value and
cost inequalities. We also take a maximum instead of a
minimum and flip the inequality with g when we formalize
δ as an optimization problem.

C. Proof of Theorem 1

Proof: We rewrite the LHS of Inequality (19) of
Lemma 2 in Appendix-B by substituting in Ŝ by Equation
(11):

P
{x:x∈X,Ṽ (x,0)>δ̂}

((
Ṽ (x, 0) : Jπ̃(x, 0) ≤ 0

)
> δ̂

)
= P

{x:x∈X,Ṽ (x,0)>δ̂}

((
Ṽ (x, 0) > δ̂

)
∩ (Jπ̃(x, 0) ≤ 0)

)
= P

{x:x∈X,Ṽ (x,0)>δ̂}
(Jπ̃(x, 0) ≤ 0)

= P
x∈Ŝ

(Jπ̃(x, 0) ≤ 0)

where the second-to-last line follows because the probability
is over the set of states that are already given to have a
learned value greater than δ̂.

We know that ∀(x, t), Jπ̃(x, t) ≤ V (x, t) from Equation
(4). Thus, it follows that:

P
x∈Ŝ

(V (x, 0) ≤ 0) ≤ P
x∈Ŝ

(Jπ̃(x, 0) ≤ 0) ≤ ϵ (20)

To prove the equivalent of Theorem 1 but in the case when
L represents a set of desirable states, we flip the value and
cost inequalities.
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