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Fig. 1: Our proposed observation-conditioned reachability-based (OCR) safety-filter framework automatically safeguards
different controllers in diverse settings without a priori access to the controllers or environments. A trained OCR value network
governs the switch between nominal and filtered control using an onboard LiDAR sensor. The framework successfully safeguards
a variety of high-level planners, including (a) learning-based, (c, f, k) model-based, (b, d, g, h, i, j) human teleoperated, and
(e) naive planners, on top of different low-level locomotion policies, including (a, f, i, j, k) learning-based and (b, c, d, e, g, h)
model-based policies. Safety is maintained despite (a, b, c) narrow corridors, (d, i, j) rough terrains, (e, k) dynamic obstacles,
(f) external disturbances, and (h) collision-seeking human teleoperation.

Abstract—As learning-based methods for legged robots rapidly
grow in popularity, it is important that we can provide safety as-
surances efficiently across different controllers and environments.
Existing works either rely on a priori knowledge of the environ-
ment and safety constraints to ensure system safety or provide
assurances for a specific locomotion policy. To address these
limitations, we propose an observation-conditioned reachability-
based (OCR) safety-filter framework. Our key idea is to use
an OCR value network (OCR-VN) that predicts the optimal
control-theoretic safety value function for new failure regions
and dynamic uncertainty during deployment time. Specifically,
the OCR-VN facilitates rapid safety adaptation through two
key components: a LiDAR-based input that allows the dynamic
construction of safe regions in light of new obstacles and
a disturbance estimation module that accounts for dynamics
uncertainty in the wild. The predicted safety value function
is used to construct an adaptive safety filter that overrides
the nominal quadruped controller when necessary to maintain
safety. Through simulation studies and hardware experiments
on a Unitree Go1 quadruped, we demonstrate that the proposed
framework can automatically safeguard a wide range of hierar-
chical quadruped controllers, adapts to novel environments, and
is robust to unmodeled dynamics without a priori access to the
controllers or environments - hence, “One Filter to Deploy Them
All”. The experiment videos can be found on the project website.

Index Terms—Hamilton-Jacobi reachability analysis, safety fil-
tering, adaptive safety, robust verification, safe legged locomotion.

I. INTRODUCTION

Legged robots hold immense potential across diverse real-
world applications, such as hazardous inspections [1], [2],
search and rescue missions [3], [4], entertainment [5], [6],
and public safety [7]. A fundamental requirement in these
scenarios is the ability to operate reliably in cluttered and a pri-
ori unknown environments. However, achieving this reliability
poses a significant challenge, as legged locomotion controllers
must balance high performance with safety (e.g., avoiding
collisions) during deployment. This work focuses on designing
controllers that enable safe, collision-free quadrupedal loco-
motion while maintaining agility in novel environments.

Existing approaches to designing (safe) controllers for
legged locomotion can be broadly categorized into model-
based and reinforcement learning (RL)-based methods. Model-
based methods provide provable safety guarantees using
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frameworks such as model predictive control (MPC), bar-
rier functions, and reachability analysis [8]–[12]. However,
model mismatches and online computational burden limit the
applicability of these approaches in the wild. In contrast,
RL-based controllers have demonstrated impressive agility
in complex terrains and unstructured environments [13]–
[19], [19]–[22] However, these controllers typically prioritize
agility, treating collision avoidance as a soft constraint during
training, which can result in unsafe behaviors in cluttered or
unseen environments.

To address these shortcomings, recent works have explored
safety critics and backup policies to safeguard RL-based
controllers [23]–[30]. These approaches precompute or learn
safety critics that indicate when the nominal policy is deemed
unsafe. While promising, existing methods often fail to ensure
safety beyond the distribution of dynamics, environments, or
locomotion policies encountered during training. Additionally,
learning reliable backup policies for unknown environments
remains a persistent challenge.

In this work, we propose an Observation-Conditioned
Reachability (OCR) safety-filter framework, designed to inte-
grate the agility of a nominal robot policy with robust safety in
cluttered and unknown environments. Our key idea is to use an
OCR Value Network (OCR-VN), which predicts the optimal
control-theoretic safety value function for new failure regions
and dynamic uncertainties encountered during deployment.
Specifically, the proposed framework achieves this adaptability
through two key components: first, it leverages an observation-
based exteroceptive input (a LiDAR scan in this work) to
dynamically adapt the safety value function directly from raw
sensory inputs, enabling robust collision avoidance in different
scenarios with onboard sensing and computation. Second, it
employs a disturbance estimation module to compute bounds
on dynamics uncertainty (e.g., due to slippage, modeling
inaccuracies, or low-level tracking errors) using recent state-
action histories and adapts the robustness of the safety value
function based on these bounds.

The OCR framework predicts when a nominal policy might
violate safety and provides corrective control commands for
the robot if necessary. A key strength of the proposed frame-
work is its generality – it can be deployed with a wide variety
of nominal legged locomotion policies without requiring any
retraining or policy-specific tuning. Additionally, we propose a
Hamilton-Jacobi reachability-based method to train the OCR-
VN, ensuring robust and efficient safety filtering. We validate
our approach through extensive simulations and real-world
experiments on a Unitree Go1 quadruped, demonstrating that
the OCR framework provides a reliable safety layer across
multiple existing legged locomotion policies (both model-
based and learning-based) and a variety of environments,
without requiring prior knowledge of the specific policy or
environment. In summary, our key contributions are:

• A reachability-based safety-filtering framework that en-
sures safety across diverse quadruped controllers and
environments, without a priori access to the controller
or the environment;

• An online adaptation mechanism that dynamically adapts
the system safety to real-world environment variations

and modeling uncertainties;
• Simulation and hardware experiments demonstrating the

superior efficacy and robustness of the proposed approach
in ensuring safe legged locomotion.

II. RELATED WORKS

A. Safe Legged Locomotion

1) Model-Based Safety: Traditional approaches for obstacle
avoidance use collision-free motion planning techniques in the
configuration space [31]–[33]. They satisfy kinematic safety
constraints but do not consider the dynamics of the system,
limiting motions to slow quasi-static trajectories. However,
recent advances in agile locomotion and its applications have
resulted in the need to consider dynamics.

Model-based approaches, such as model predictive control
(MPC), use hand-designed or learned dynamics models to
compute optimal maneuvers that are dynamically feasible and
satisfy safety constraints [26], [34]–[39]. Despite their impres-
sive performance, such model-based approaches are generally
computationally intensive for online settings and can run
into safety feasibility issues, especially in cluttered obstacle
environments. Additionally, although they often perform well
in settings that are captured accurately by their models, the
safety guarantees are not robust to model mismatches that a
robot might encounter in the wild [13], [40].

2) RL-Based Safety: Given the challenges associated with
existing model-based approaches for agile locomotion, model-
free RL-based approaches have emerged as popular alterna-
tives. RL-based approaches have found remarkable success in
synthesizing efficient and robust locomotion in the real world,
especially as the availability of high-fidelity simulators has
increased [41], [42]. They are well-suited to handle complex
high-dimensional systems, multimodal feedback signals, and
difficult-to-specify task objectives [43].

Previous studies have optimized locomotion policies for
specific skills such as agility [44], [45], resilience [46]–
[48], and difficult terrain traversal [13], [20], [21], [49]–
[55]. However, these works typically focus on maximizing
agility without regard to safe navigation. These methods can
be combined with high-level collision-free planners; however,
they suffer from the aforementioned limitations of model-
based controllers and restricted mobility [29], [56]–[58].

Other works consider safe navigation during the learning
process by including a large collision penalty in the reward
function to incentivize collision-avoidance [14], [57], [59]–
[66]. Unfortunately, there are no formal guarantees of safety,
and the synthesized locomotion policies can degrade in safety
when transferred to the real world due to a distribution shift
away from the environments seen during training.

3) Certificate-Based Safety: In order to provide rigorous
safety assurances, many works have proposed certificate-based
safety methods within both model-based [26], [34], [35], [37],
[39] and RL-based [23]–[25], [27]–[30], [67] frameworks,
most often using control barrier functions or reachability-based
value functions. These methods are typically reliant on the
offline availability of a certificate function or dynamics, which
limits their applicability to complex real-world systems.
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Some recent works learn adaptive safety certificates and
recovery policies to ensure safety at runtime [23]–[25], [27]–
[29], [67]. He et al. [29] propose Agile But Safe (ABS), an
approach that co-designs performance and control-theoretic
safety controllers via RL and switches between them as
necessary to maintain safety. Since the computed safety as-
surances are policy-dependent, they can be suboptimal and
overly conservative, depending on the quality of the nominal
policy. Moreover, the safety controller needs to be retrained
as the policy is fine-tuned, which can be cumbersome and
time-consuming. Additionally, since approaches like ABS lack
active mechanisms to account for unmodeled dynamics during
deployment (e.g., slippage), the computed safety assurances
are valid only within the distribution of environments and
locomotion policies seen during training. These limitations
are especially relevant due to the rising popularity of diverse
learning-based policies, whose safety assurances must be
updated as they are fine-tuned.

Our work most closely aligns with certificate-based safety
methods like ABS, but we address several existing limitations.
Instead of computing the policy-conditioned safety function,
we compute the optimal control-theoretic safety controller via
Hamilton-Jacobi (HJ) reachability analysis. This enables us
to construct a safety filter for any nominal controller without
needing to recompute the safety assurances. We discard the
need for high-fidelity simulators by using a reduced-order
system and robustly handle the model gap as an adversarial
disturbance in the dynamics. By estimating and adapting to
disturbance bounds during deployment, our proposed frame-
work is able to ensure safety more robustly across a range of
settings and policies compared to previous works.

B. Reachability-Based Safety Filters

This work extends the class of Hamilton-Jacobi (HJ)
reachability-based filters [68]–[70] which ensure safety at
deployment by overriding a nominal controller when necessary
to preserve safety. Due to the computational burden, traditional
reachability-based safety filters are typically constructed of-
fline for systems assumed to be known a priori [71]. In the
case of quadrupedal navigation, a quadruped using a specific
locomotion policy is often abstracted as a reduced-order sys-
tem for computational tractability. The dynamics of the system
depend on the locomotion policy; thus, reachability-based
filters will not readily safeguard different locomotion policies.
Additionally, it is challenging to adapt safety assurances to dif-
ferent obstacle configuration and terrain properties due to the
computational burden [72], [73]. This work overcomes these
limitations by distilling the safety solutions for a wide range of
system settings into an Observation-Conditioned Reachability-
based Value Network (OCR-VN). During deployment, the
robot adapts by querying the trained OCR-VN with the current
state, control, and observation history.

III. PROBLEM SETUP

See Table I for notation. In this work, we are interested in
ensuring the safety of a quadruped robot in an a priori un-
known environment e ∈ E . Here, e contains all the information

TABLE I: Nomenclature

Symbol Definition.
t, T Time, time horizon.
e ∈ E Environment.
x ∈ X State.
u ∈ U Control input.
d ∈ D Disturbance input.
f System dynamics.
π, πhigh, πlow Hierarchical, high-level, and low-level policies.
ξπx,t(τ) State achieved at time τ by starting at initial state

x at time t and applying policy π over [t, τ ].
F , l Failure set and function.
o ∈ O Observation.
xr ∈ Xr ⊆ X , fr Reduced-order state and dynamics.
ω = (v, w) Twist ω consisting of velocity v and yaw rate w.
d̄px,py , d̄pθ Disturbance bound in px, py and in pθ .
d̄r = [d̄px,py , d̄pθ ] Disturbance bound for reduced-order system.
V , Vψ Ground-truth and learned value functions.

Abbreviation Definition.
OCR Observation-conditioned reachability.
ABS Agile But Safe [29].
WTW Walk-These-Ways [21].
MPC Model predictive control policy by Unitree [74].
PS Predictive sampling-based planner.
NVE Naive planner.
HMN Human-teleoperated planner.

needed to inform the effects of the environment on dynamics,
as well as failure regions. For example, e can include the
terrain geometry, friction coefficients, and obstacle locations.

We model the quadruped as a nonlinear dynamical system
with state x ∈ X , control u ∈ U , and dynamics ẋ = f(x, u; e)
governing how x evolves over time until a final time horizon
T . The dynamics are also affected by the environment e,
e.g., by the effects of a slippery floor. We denote the robot
observations from proprioception and/or exteroception as oex =
h(x; e) ∈ O. For exteroception, we primarily deal with LiDAR
scans in this work, though other sensors can also be used. We
denote the set of failure states as Fe ⊆ X (e.g., collision
states) which the robot is not allowed to enter. The failure
set can be represented by the zero-sublevel set of a Lipschitz-
continuous function le : X → R, i.e., x ∈ Fe ⇔ le(x) ≤ 0.
Note that Fe, le are also functions of e.

Let πnom denote a hierarchical nominal policy for the
quadruped that takes the system history and outputs the robot
control. We assume that πnom consists of a high-level planner,
πhigh

nom , that provides twist commands ω := (v, w) consisting of
a forward velocity v and a yaw rate w. These twist commands
are tracked by a low-level locomotion policy, πlow

nom, e.g., an
RL-based policy [21], [29], [44] or an MPC-based policy [32],
[74], that ultimately provides control inputs u for the robot.
This architecture is popular in the legged robotics literature
where πhigh

nom is typically designed for collision avoidance and
navigation, and πlow

nom could be an agile locomotion policy that
can handle different terrains that the robot might encounter in
the wild.

Let ξπx,e,t(τ) denote the state achieved at time τ ∈ [t, T ]
by starting at initial state x at time t and applying the
control policy π over [t, τ ] in environment e. Our goal is to
compute a safe policy πsafe that ensures that the quadruped
remains outside of the failure set at all times, i.e., πsafe :
∀τ ∈ [0, T ], ξπsafe

x,e,0(τ) /∈ Fe, while preserving the underlying
performance of πnom to the extent possible. The key challenge
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in designing such a policy is that the robot environment (and
hence the failure set and the robot dynamics) is not known
beforehand, necessitating a real-time update of the safety
policy with the environment. A second challenge stems from
the fact that we want the safety framework to be agnostic to
different nominal policies.

IV. BACKGROUND

A. Hamilton-Jacobi Reachability

Our proposed framework builds upon Hamilton-Jacobi (HJ)
reachability analysis, which is a popular formal verification
tool for computing safety guarantees for general nonlinear
dynamical systems [75], [76]. For reachability analysis, we
will consider a more general form of dynamics ẋ = f(x, u, d),
where d ∈ D represents the disturbance. Later on, in our work,
we will use d to model potential uncertainty in the system
dynamics model. We also omit the dependence on environment
for now for brevity purposes.

HJ reachability analysis is concerned with computing the
system’s initial-time Backward Reachable Tube, which we
denote as BRT. We define BRT as the set of all initial states
x ∈ X starting from which, for all control signals u(·), there
exists a disturbance signal d(·) such that the system will
inevitably enter the failure set F within the time horizon [0, T ]:

BRT := {x ∈ X : ∀u(·),∃d(·),∃τ ∈ [0, T ], ξ
u(·),d(·)
x,0 (τ) ∈ F}.

(1)
By ensuring that the system remains outside of BRT, we
guarantee system safety for the time horizon T .

In HJ reachability, computing BRT is formulated as a robust
optimal control problem. First, we implicitly represent the
failure set F by a failure function l(x) whose zero-sublevel
set yields F : F = {x ∈ X : l(x) ≤ 0}. l(x) is commonly
the signed distance function to F . Next, we define the cost
function corresponding to a control signal u(·) and disturbance
signal d(·) to be the minimum of l(x) over the trajectory
starting from state x and time t:

Ju(·),d(·)(x, t) := min
τ∈[t,T ]

l(ξ
u(·),d(·)
x,t (τ)). (2)

Since the control aims to avoid F under worst-case distur-
bance, the value function corresponding to this robust optimal
control problem is:

V (x, t) := max
u(·)

min
d(·)

Ju(·),d(·)(x, t). (3)

By defining our optimal control problem in this way, we
can easily recover BRT using the value function. The value
function being nonpositive implies that the failure function is
nonpositive somewhere along the optimal trajectory, or in other
words, that the system will inevitably enter F . Conversely, the
value function being positive implies that there exists a control
signal that will prevent the system from entering F even under
the worst-case disturbance signal. Thus, BRT is computed as
the zero-sublevel set of the initial-time value function:

BRT = {x ∈ X : V (x, 0) ≤ 0}. (4)

The value function in Equation (3) can be computed using
dynamic programming, resulting in the following final value
Hamilton-Jacobi-Isaacs Variational Inequality (HJI-VI):

min{DtV (x, t) +H(x, t,∇V (x, t)), l(x)− V (x, t)} = 0,

V (x, T ) = l(x), ∀t ∈ [0, T ].
(5)

DtV (x, t) and ∇V (x, t) represent the temporal derivative and
spatial gradient of the value function V (x, t), respectively. The
Hamiltonian H(x, t,∇V (x, t)) encodes how the control and
disturbance interact with the system dynamics:

H(x, t,∇V (x, t)) := max
u∈U

min
d∈D

∇V (x, t) · f(x, u, d). (6)

The value function in Equation (3) also induces the optimal
safety controller:

u∗(x, t) := argmax
u∈U

min
d∈D

∇V (x, t) · f(x, u, d). (7)

Intuitively, the optimal safety controller aligns the system
dynamics in the direction of the value function’s gradients,
thus steering the system towards higher-value states, i.e., away
from F . An important result of HJ reachability theory is
that safety is guaranteed despite worst-case disturbances if
the system starts outside of BRT and applies the control in
Equation (7) at the BRT boundary [68].

B. HJ Reachability-Based Safety Filtering

In this work, we will use HJ reachability analysis to
maintain the safety of the quadruped robot during deployment
via HJ reachability-based safety filtering, where the computed
safety value function is used to construct a safety filter that
guarantees system safety. While there are many different types
of safety filters that can be constructed, we use the smooth
least-restrictive safety filter, which aims to maximally preserve
the underlying performance of a given nominal policy πnom by
intervening as seldomly and as lightly as possible [68]. When
outside of the system BRT, the smooth least-restrictive filter
πsafe outputs the nominal control. At the boundary of the BRT,
πsafe outputs a safe control as close as possible to the nominal
control by solving a quadratic program (QP).

πsafe(x, t) =

{
πnom(x, t), V (x, t) > 0

πQP(x, t), V (x, t) = 0,
(8)

where πQP(x, t) is obtained by solving:

argmin
u∈U

||u− πnom(x, t)||22
s.t. DtV (x, t) + min

d∈D
∇V (x, t) · f(x, u, d) = 0.

(9)

Intuitively, the constraint in (9) enforces safe control of the
system at the BRT boundary, where the system safety could be
in jeopardy. It has been shown that the filter in 8 is guaranteed
to maintain system safety under worst-case disturbances as
long as the system starts outside of the BRT [68]. In the
next section, we propose to construct an adaptive version
of this safety filter by using an Observation-Conditioned
Reachability-based Value Network (OCR-VN) that predicts
the safety value function for new failure regions and dynamic
uncertainties encountered during deployment.
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Fig. 2: The OCR framework. (Left) During training, we generate environments with random obstacles and disturbance bounds.
The OCR-VN is trained to predict the value function (visualized over a grid) using the disturbance bound, the LiDAR reading,
and the state. (Right) During deployment, the OCR-VN is queried with the observed LiDAR reading, the disturbance bound
estimated using the most recent state and action history, and the current state estimate to construct an adaptive safety filter.

V. APPROACH

The main difficulty in directly applying traditional HJ
reachability methods in Section IV to the problem in Section
III is that the system dynamics f(x, u; e) and the failure
set Fe are functions of the unknown environment e. Thus,
a safety controller must be able to adapt to both dynamics
uncertainty and environment uncertainty. To overcome this
issue, we propose the Observation-Conditioned Reachability
(OCR) safety-filter framework.

The key idea behind our framework is to use an OCR
Value Network (OCR-VN) that predicts the optimal safety
value function for new dynamics f(x, u; e) and failure regions
Fe using the most recent system and observation history.
The OCR-VN facilitates rapid adaptivity through two key
components: an observation-based input to the network (see
Section V-A3) and a disturbance estimation module (see Sec-
tion V-B1). The observation-based input allows the OCR-VN
to perceive new obstacles in the environment and dynamically
adapt the value function to safeguard against them; whereas
the disturbance estimation module allows the OCR-VN to
tune the degree of uncertainty that is present within the
dynamics model based on the most recent system history,
and correspondingly adapt the safety value function to this
dynamics uncertainty. The resultant safety value function is
then used to filter the nominal policy to ensure safety while
maintaining the agility of the underlying policy. Ultimately,
our safety framework provides high-level twist commands,
which, when combined with the low-level nominal policy,
maintains the robot’s safety.

The OCR framework can be divided into two distinct
phases: training and deployment. These are illustrated in
Figure 2. During the training phase, we collect a dataset
across different environments to train the OCR-VN to predict
the safety value function, directly from raw observations and
uncertainty bounds. During the deployment phase, we query
the OCR-VN with the onboard observation and an estimate
of the dynamical uncertainty to construct an adaptive safety
filter across different locomotion policies and environments.
The OCR framework is described in more detail next.

A. Training Phase of the OCR Framework

1) System Dynamics Model: During the training phase, we
aim to distill the ground-truth value functions for a diverse
range of environments e into an OCR-VN. The first difficulty
that we encounter is how to model the full quadruped dy-
namics f(x, u; e), which is high-dimensional and complex.
Our key insight is that many quadruped control schemes are
hierarchically composed of a high-level navigation planner and
a low-level locomotion policy. From the perspective of the
high-level planner, the quadruped, along with its locomotion
policy, form a system with a reduced-order dynamics model.
Thus, we propose to use a reduced-order dynamics model
fr(xr, ω), where xr ∈ Xr ⊆ X is the reduced state and ω is
the control input of the reduced-order model. We capture any
possible modeling errors of fr(xr, ω) as disturbances in the
system. We propose to estimate bounds on these disturbances
during deployment for adaptive safety guarantees.

We set fr(xr, ω) to the dynamics of a 3D Dubins car system
with state xr = (px, py, pθ), where (px, py) is the quadruped’s
2D location, and pθ is the quadruped’s heading. We model
the error in fr(xr, ω) as an unknown additive disturbance der,
which is a function of the underlying environment e. Thus,
the reduced-order dynamics fr(xr, ω, der) is given as:

ṗx = v cos pθ + depx , ṗy = v sin pθ + depy , ṗθ = w + depθ ,

(10)

with the control input ω = (v, w) being a commanded
twist that includes forward velocity v ∈ [vmin, vmax] and
yaw rate w ∈ [wmin, wmax]. The disturbance input der =(
depx , d

e
py , d

e
pθ

)
consists of a bounded additive disturbance

in position ||[depx , d
e
py ]|| ≤ d̄epx,py and a bounded additive

disturbance in heading |depθ | ≤ d̄epθ . We use d̄er to denote the

disturbance bound tuple d̄er =
(
d̄epx,py , d̄

e
pθ

)
, which is a func-

tion of the underlying environment e. Since the disturbances
are additive in all state variables, the disturbance bounds
can always be chosen large enough to contain any possible
modeling errors, although at the cost of model conservatism.
In order to be robust to the modeling error, we assume that
the disturbances are adversarial in nature.
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Due to the choice of state variables in the reduced-order
model, we are restricted to safety constraints specified in terms
of the quadruped’s 2D location and 1D orientation. This is
sufficient for our work, since we focus exclusively on safe
navigation. We remark that other fr and disturbance assump-
tions can be chosen depending on the desired performance,
conservatism, and computational complexity.

2) Data Generation: Based on our modeling choices in
Section V-A1, we let the underlying environment e =

(
Fe, d̄er

)
consist of the failure set Fe and the disturbance bound d̄er
described in Section V-A1. We generate each environment e
by randomly spawning 2D obstacles at various locations and
sampling a disturbance bound. These disturbance bounds will
correspond to the model uncertainties considered during the
deployment phase and will be estimated online (Section V-B1).

For each of the generated environments, we compute the
initial-time ground-truth value function V (xr, 0; e) using the
hj_reachability Python toolbox [77], which we denote
as V (xr; e) for brevity. We compute the converged value
function, that is, when we take the time horizon T → ∞.
This ground-truth value function is then used to generate data
for training the OCR-VN.

Specifically, for each training environment, we generate
training pairs

((
xr, d̄

e
r, o

e
)
, V (xr; e)

)
by setting the system

origin to different states in the environment and rendering the
corresponding observation oe at the origin. For each system
origin and its corresponding observation oe, we sample the
value function V (xr; e) and its spatial gradients ∇V (xr; e)
at uniformly random states xr (specified in the frame of the
new system origin) that are not occluded by obstacles. The
collected data is then used to train the OCR-VN via supervised
learning as described in the next section. Details on the specific
parameters of our data generation are provided next.

To generate an environment, we spawn n circular 2D
obstacles, where n is uniformly sampled from {1, ..., 10}. The
radius r of each obstacle is uniformly sampled from [0.1, 1] m.
The location (px, py) of each obstacle is uniformly sampled
from [−5, 5] m × [−5, 5] m. Disturbance bounds d̄epx,py and
d̄epθ are uniformly sampled from [0, 1] m/s and [0, 2] rad/s,
respectively. In this work, we use LiDAR observations which
consists of 100 evenly spaced angles from [−π, π] rad and
clipped to within [0.2, 10] m, determined by hardware limits.

For obtaining the ground-truth value function, we use a
grid of shape (100, 100, 60) spanning [−5, 5] m × [−5, 5] m
× [−π, π] rad and a time horizon of 2 s, when the value
function approximately converges. The control bounds for the
system are v ∈ [0, 2] m/s and |w| ≤ 2 rad/s. We generate a
total of 1, 000 training environments and 100 validation en-
vironments. Generating the datasets takes roughly 35 minutes
on an NVIDIA 3090Ti GPU. The ground-truth value function
V (xr; e) and the corresponding LiDAR observation oe for a
validation environment are shown in Figure 3.

We generate a training batch by first sampling 10 training
environments. For each environment, we set the system origin
to 10 different states sampled outside of the obstacle set and
capture the corresponding LiDAR observation, resulting in 10
different egocentric observations. This is done to increase the
diversity of LiDAR observations seen during training without

Fig. 3: (Left) A LiDAR observation oe in a validation environ-
ment where d̄epx,py = 0.82 m/s, d̄epθ = 0.56 rad/s. (Right top-
row) The ground-truth value function and its spatial gradients.
(Right bottom-row) OCR-VN predictions using oe and d̄er. As
shown above, the OCR-VN predictions for the value function
and its spatial gradients are highly accurate.

substantially increasing the computational effort, which is
important because the observations are a high-dimensional
network input. For each sampled system origin, we query
the ground-truth value function and its spatial gradients at
500 random states that are not occluded by obstacles. This
ultimately results in N = 50, 000 samples per training batch.

3) OCR-VN Architecture and Training: We train an OCR-
VN to predict V (xr; e) from the reduced system state xr,
disturbance bound d̄er, and the LiDAR observation oe captured
at the system origin. Let us denote the value predicted by
the OCR-VN as Vψ(xr, d̄er, o

e), where ψ denotes the learn-
able weights of the neural network. We choose Vψ to be a
multilayer perceptron with 4 hidden layers of 512 neurons
each. We desire Vψ to accurately model the spatial gradients
of V as well, since they will be used in the safety filter
construction. Thus, we use sinusoidal activations, which have
been shown to lead to more effectively gradient modeling than
ReLU activations [78].

For each training batch as described in Section V-A2, we
minimize the MSE training loss:

1

N

N∑
i=1

(||V iψ(xr, d̄er, oe)− V i(xr; e)||22+

||∇xV
i
ψ(xr, d̄

e
r, o

e)−∇xV
i(xr; e)||22)

which includes a loss term for both the value and its spatial
gradients. We use the Adam optimizer with a learning rate of
10−5. Training converges in roughly 8 hours on an NVIDIA
3090Ti GPU. As shown in Figure 3, the OCR-VN can accu-
rately model the value function and its spatial gradients for a
validation environment using a single LiDAR observation oe.

4) OCR-VN Calibration: The OCR-VN will inevitably con-
tain learning errors that can be critical for safety. To safeguard
against these errors, we calibrate the OCR-VN by shifting its
output by a probabilistic error bound δ computed on the valida-
tion dataset. We will refer to δ as the “calibration level” and the
shifted network output as the “calibrated output”. We employ
conformal prediction, a popular uncertainty quantification tool
in the machine learning literature, to compute δ up to a desired
confidence β and violation rate ϵ [79], [80].

Our procedure is as follows. Select a desired confidence
β ∈ (0, 1) and violation rate ϵ ∈ (0, 1). Sample N calibration
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TABLE II: Calibration Levels for the OCR-VN
with N = 107, β = 10−12

Violation Rate ϵ 10−1 10−2 10−3

Calibration Level δ (m) 0.22 0.49 0.99

points according to a distribution P over the validation dataset
∆. Compute the conformal scores {si}Ni=1 as the prediction
errors si = V iψ

(
xr, d̄

e
r, o

e
)
−V i (xr; e). The following theorem

provides a probabilistic bound on the OCR-VN error:

Theorem 1 (Conformal OCR-VN Calibration). Compute the
number of “outliers” k as:

argmax
k

k :

k∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i ≤ β, (11)

where β, ϵ, and N are as defined above. Compute the
calibration level δ as the N−k

N quantile of the conformal scores
{si}Ni=1. Then, with probability at least 1− β over the draws
of the calibration samples, the following holds:

P
(xr,e,d̄er,o

e)∈∆

(
Vψ(xr, d̄

e
r, o

e)− V (xr; e) > δ
)
≤ ϵ (12)

The proof of Theorem 1 is presented in Appendix A.
Ignoring the confidence parameter β for a moment, Inequality
(12) tells us that the volume of the validation dataset for which
the OCR-VN overestimates the safety value by more than δ is
bounded by the violation parameter ϵ. This enables us to be
sure, up to a desired ϵ, that the true safety value is at least as
large as that predicted by the OCR-VN, once adjusted by δ.

To interpret the confidence parameter β, note that the
calibration level δ is a random variable that depends on the
randomly sampled calibration set. It might be the case that we
happen to draw an unrepresentative calibration set, in which
case the ϵ bound does not hold. β controls the probability
of this adverse event, which regards the correctness of the
probabilistic guarantee given by Inequality (12). Fortunately, β
goes to 0 exponentially with N , so β can be chosen sufficiently
small, such as 10−12, when we sample large N . 1−β will then
be so close to 1 that it does not have any practical importance.

We set N = 107, β = 10−12 and compute δ corresponding
to various ϵ in Table II. We select δ = 0.49 m associated with
ϵ = 10−2 as a comfortable trade-off between conservatism
and performance for the tasks in this work.

B. Deployment Phase of the OCR Framework

In this section, we describe the steps involved in deploy-
ing the OCR framework onto a quadruped robot. During
deployment, the quadruped periodically receives a LiDAR
observation oe from an onboard sensor as a function of
the environment e. Using a LiDAR-based state localization
algorithm, the quadruped maintains an estimate of its reduced
state xr in the relative frame defined by oe. The quadruped
then estimates the disturbance bound d̄er as a function of the
most recent state and action history

(
xi−k:ir , ωi−k:i−1

)
using

an online disturbance bound estimation scheme. It queries the
OCR-VN with the input

(
xr, d̄

e
r, o

e
)

to construct an adaptive
safety filter that minimally overrides the nominal controller

when necessary to maintain safety. We describe the details
of the online disturbance bound estimation scheme and the
adaptive safety filter next.

1) Online Disturbance Bound Estimation: We propose to
estimate the disturbance bound d̄er using the most recent state
and action history, to enable rapid adaptation to dynamical
uncertainty. Let xi−k:ir and ωi−k:i−1 denote a discrete history
of estimated states and twist commands ending at time τ .
To efficiently roll out the state trajectory in discrete time for
online computation, we use Euler’s method. Since disturbance
is additive in fr(xr, ω, der) in Equation (10), we have:

xir ≈ xi−kr +

i−1∑
j=i−k

η · (fr(xjr, ωj) + (der)
j
)

≈ xi−kr +

i−1∑
j=i−k

η · fr(xjr, ωj) + η

i−1∑
j=i−k

(der)
j
,

where η is the discrete time step. To ensure that we capture
systemic disturbances in the dynamics and ignore transient
noise in the state estimation, we assume that the disturbance
input takes the form of a low-frequency signal and remains a
constant dτr throughout the short history:

xir ≈ xi−kr +

i−1∑
j=i−k

η · fr(xjr, ωj) + η · k · dτr .

Thus, we estimate the disturbance dτr as:

dτr ≈ xir − x̂ir
η · k

, (13)

where x̂ir := xi−kr +
∑i−1
j=i−k η·fr(xjr, ωj) is the state predicted

by disturbance-free dynamics. Intuitively, dτr is the error in the
state prediction normalized by the prediction time horizon η·k.
We set η · k = 2 s in practice.

By computing dτr over the most recent φ discrete time steps
ending at the current time t, i.e., for τ = t − j · η,∀j ∈
{0, 1, ..., φ− 1}, we construct a sliding window of estimated
disturbances d1:φr . To ensure good coverage of the estimated
disturbances, we compute the disturbance bound d̄er as:

d̄er = |µ(
(
d1:φr

)
c
)| ± b · σ(

(
d1:φr

)
c
), (14)

where the coverage parameter c ∈ [0, 1] determines the middle
fraction of the sorted window of disturbances d1:φr to be
considered. This makes sure that the safety value function does
not become overly conservative due to outlier disturbances.
µ(·) is the sample mean, and σ(·) is the sample standard
deviation. b ≥ 0 is the spread of disturbances, in standard
deviation units, that we compute the disturbance bound for,
modulating the degree of robustness of the disturbance bound.
A larger choice of b results in a more robust disturbance bound.
We set c = 0.8, b = 2, and η · φ = 2 s in practice. We
compute two separate disturbance bounds: d̄epx,py bounding
the uncertainty in the position dynamics and d̄epθ bounding
the uncertainty in the yaw dynamics. For computing a bound
on the norm of depx,py , we use Equation (14) on a window of
disturbance norms instead of raw values.
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2) Adaptive Safety Filter: We use the OCR-VN to construct
a smooth least-restrictive safety filter (see Section IV-B) safe-
guarding a potentially unsafe nominal controller that is given
to us. Specifically, we compute a filtered high-level policy πhigh

safe
which, when combined with the underlying low-level policy
πlow

nom, maintains the overall system safety.
We compute the hierarchical filtered policy πsafe(x, d̄

e
r, o

e)
as follows:

πsafe(x, d̄
e
r, o

e) =

{
πnom(x), Vψ(xr, d̄

e
r, o

e) > δ

πlow
nom ◦ πhigh

QP (xr, d̄
e
r, o

e), Vψ(xr, d̄
e
r, o

e) ≤ δ,
(15)

where πhigh
QP (xr, d̄

e
r, o

e) is obtained by solving:

min
ω∈Ω,s≥0

(
||ω − πhigh

nom(xr)||22 + λs2
)

s.t. min
dr∈De

r

∇Vψ(xr, d̄er, oe) · fr(xr, ω, dr) ≥ −s
(16)

where the slack variable s ensures that there always exists a
feasible solution, and λ (set to 103) is the relative weight of
s in the objective. De

r is the set of disturbances respecting the
disturbance bound d̄er. Intuitively, (16) minimally adjusts the
nominal policy so that the resultant twist commands ensure
system safety in the current environment. Furthermore, the
introduction of the slack variable ensures that the QP problem
in (16) is always feasible, especially when the disturbance
bounds are overly conservative. Note that the disturbance
optimization in the constraint in (16) is independent of the
optimization of ω, since the disturbance enters additively
into fr in Equation (10). Since fr is affine in control and
disturbance, (16) is a quadratic program (QP) that we can solve
efficiently online, making the proposed framework amenable
for real-world robotic systems.

We remark that the design of the filter in (15) is grounded
in reachability theory. If Vψ perfectly models the underlying
value function and the system starts outside of the BRT, then
(15) is guaranteed to maintain safety [68].

Remark. When the quadruped is controlled by an end-to-
end nominal controller, we can use the OCR-VN framework
to maintain safety with a minor adjustment. While Vψ > 0,
we permit the nominal controller to execute unhindered. Oth-
erwise, we must provide our own high-level planner πhigh

nom (x)
for solving (16) and a low-level policy πlow

nom for execution.

VI. SIMULATION EXPERIMENTS

We test the proposed framework on a Unitree Go1
quadruped in Isaac Sim (this section) and on a hardware
testbed (Section VII) in a variety of unseen obstacle settings
and terrains, as well as on different nominal controllers. The
goal of our simulation studies and experiments is to answer
the following questions about the proposed framework:

1) Can the safety filter dynamically adapt to unknown
obstacles to maintain safety?

2) Can the safety filter adapt to system and environment un-
certainty (e.g., uneven terrains, slippery surfaces, etc.)?

3) Can the safety filter maintain safety under different
nominal policies?

A. Nominal Controllers

We test our framework on several different hierarchical
nominal policies. A nominal policy is generated by selecting
one of the three high-level planners and one of the three low-
level locomotion policies described below. These policies are
selected to contain both RL-based policies as well as MPC-
based policies. We test all different combinations of high-level
and low-level policies, but present the results for only a few
of them here for brevity purposes.

Additionally, we include an end-to-end nominal policy from
ABS [29] (called ABS-Agile here on), as an illustration of how
our method can generalize to end-to-end nominal policies.
To implement our method on top of the end-to-end ABS-
Agile policy, we compute the safety twist commands using the
proposed filter framework in Equation (15) with the Predictive
Sampling-based (PS) high-level planner (see VI-A1a) and use
the ABS-Recovery policy (see VI-A2c) to track the filtered
twist commands. Whenever the system safety is not at risk,
we use the nominal ABS-Agile policy.

1) High-Level Planners:
a) Predictive Sampling-Based Planner (PS): PS is a

sampling-based high-level MPC planner that optimizes the
robot trajectory to reach the goal while avoiding obstacles. The
cost function for a discrete control sequence ω = {ωj}⌊T/η⌋j=1

evaluated at the reduced state xr is given by:

Jω(xr) =

⌊T/η⌋∑
j=1

(
||x̂jr − g||+ c · 1{x̂jr ∈ L̂e}

)
where T is the prediction horizon and η is the discrete time
step. x̂jr is the future state at time j · η predicted by the
reduced-order dynamics fr in Equation (10) after applying
ω to the system. g is the goal state, c is a collision penalty,
and L̂e is the estimated obstacle map computed online using
obtained LiDAR scans via tinySLAM [81]. Intuitively, the
cost function is minimized by control sequences that bring
the system to the goal fastest without collisions. To compute
the optimal high-level commands, PS samples N control
sequences ωi,∀i = 1, ..., N from a Gaussian centered at ωseed
with standard deviation σ. The cost Jωi(xr) for each sequence
is computed and finally the best control sequence ωbest is
selected which minimizes the cost. PS executes the first twist
command in ωbest and sets ωseed = ωbest for the next control
iteration. We set N = 1, 000, σ = 0.5, T = 4 s, η = 0.2 s,
c = 109, and the initial ωseed to the control range center.

b) Naive Planner (NVE): NVE performs basic goal-
seeking without obstacle avoidance. Let pθgoal be the angle to
the goal relative to the robot’s heading. NVE computes:

v =

{
vmax, |pθgoal | ≤ π

2

vmin, |pθgoal | > π
2 ,

w =

{
wmin ·min{|

pθgoal

pθmax
|, 1}, pθgoal ≤ 0

wmax ·min{|
pθgoal

pθmax
|, 1}, pθgoal > 0,

where pθmax
is the heading difference beyond which yaw rate

is maximized. We set pθmax = π
4 rad. Intuitively, NVE turns

greedily towards the goal and commands maximum/minimum
forward velocity when the goal is ahead/behind.
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c) Human Teleoperation (HMN): a human teleoperator
provides the high-level twist commands.

2) Low-Level Policies:
a) Walk-These-Ways (WTW): an RL-based policy that

encodes a structured family of locomotion strategies to enable
diverse task generalization such as crouching, hopping, run-
ning, and others [21]. During training, the policy is rewarded
for accurate twist tracking and gait following. During deploy-
ment, different locomotion strategies can be used by changing
gait parameters. We use the gait parameters corresponding to
a 3 Hz trot for its stability and agility.

b) Legged Model Predictive Control (MPC) by Unitree:
a model-based policy provided by Unitree Robotics as a
ROS package for the Go1 quadruped robot [74]. The policy
tracks twist commands using an internal MPC-based algorithm
that computes motor torque controls. It is widely used by
consumers of the Go1 quadruped hardware.

c) ABS Recovery Policy: an RL-based policy used in the
ABS framework to track twist commands as fast as possible
in order to serve as a backup shielding policy [29]. During
training, the policy is rewarded for accurate twist tracking and
maintaining a stable posture. Similar to its role in the ABS
framework, we will use the ABS-Recovery policy as the low-
level backup shielding policy for the ABS-Agile policy.

B. Baseline and Ablations

We evaluate our framework against a range of nominal con-
trollers and the end-to-end safety framework, ABS, proposed
in [29]. ABS integrates an RL-based agile policy with a safety-
oriented recovery policy. A value function-based predictor
determines when to switch to the recovery policy, which then
generates safe twist commands to be executed by the recovery
policy. We refer the interested readers to [29] for more details.

We also evaluate the OCR framework without the distur-
bance estimation module (OCR \ DE) and calibration step
(OCR \ C), as well as if the safety filter is not used at all (No
Filter) to understand the importance of each of these modules.

C. Metrics

Each experiment trial ends in either a success, a collision,
or a timeout after 60 s. Across successful runs, we report
the average velocity v̄ of the quadruped along the trajectory,
the average rate of safety filter activation r̄, and the average
minimum distance to the obstacle set q̄.

D. Simulation Setups

We test our framework as well as baselines on randomly
generated environments. Each environment contains 4 circular
obstacles, where each obstacle is spawned at some location
drawn uniformly randomly from [−2, 2] m × [−2, 2] m.
Each obstacle has a radius drawn uniformly randomly from
[0.1, 1] m. Each environment also draws an additional payload
uniformly randomly from [−1,−0.5]∪[0.5, 1] kg and a ground
friction coefficient [0.5, 0.75]∪ [1.25, 1.5] for dynamical varia-
tion. We remark that these payloads and frictions are contained
within the range used to train the nominal policies and
baselines so that the comparison is fair, but they represent
the outer limits to effectively test robustness. The quadruped
must navigate from (−5, 0) m to (5, 0) m without colliding
(see Figure 4).

Additionally, we present hand-designed environments that
stress-test and highlight the abilities of our framework.

E. Simulation Results

Recall that the goal of our simulation studies and experi-
ments is to answer the following questions: can the safety filter
adapt to unknown obstacles in the environment, uncertainty in
the system and environment, and different nominal policies?

1) Safeguarding Different Nominal Controllers: We first
evaluate the efficacy of the OCR framework and its ablations
for safeguarding various nominal controllers in different obsta-
cle settings. Numerical results are listed in Table III. The OCR
framework achieves high success rates, low collision rates, and
comfortable distances to the obstacle set across all nominal
controllers, highlighting its ability to automatically safeguard
different nominal controllers in different environments without
a priori knowledge. Its success rates are consistently high
regardless of whether the underlying nominal control has built-
in obstacle avoidance (ABS-Agile and PS + WTW) or not
(NVE + WTW). Figure 4 illustrates the robot trajectories under
the OCR framework and the framework’s ability to ensure
safety when the nominal controller would cause collision.

The results in Table III also clearly show the importance
of the disturbance estimation module and the calibration step
for enabling the OCR framework to be robust to modeling
and learning errors, respectively. Interestingly, even though the
ABS framework is particularly designed to safeguard the ABS-
Agile policy, our method also outperforms the ABS framework
on ABS-Agile. A key reason for this is the robustness of the
proposed framework not only to environment uncertainty (i.e.,

Fig. 4: The OCR framework (green/red : nominal/filtered) safeguards different nominal controllers navigating to a goal (cyan)
in an environment with a payload of −0.6 kg and a friction of 0.7. By themselves (white), the (a) PS + WTW, (b) NVE +
WTW, and (c) ABS-Agile controllers fail to maintain safety due to dynamical uncertainty caused by low payload and friction.
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TABLE III: Simulation Results for OCR, Ablations, and ABS across Nominal Controllers (100 Trials)

Controller Filter Success Rate ↑ Collision Rate ↓ Timeout Rate ↓ v̄ (m/s) ↑ r̄ ↓ q̄ (m) ↑

ABS-Agile

No Filter 0.75 0.25 0.00 2.10 0.00 0.41
ABS 0.80 0.20 0.00 2.03 0.03 0.41
OCR \ DE 0.40 0.35 0.25 0.98 0.62 0.41
OCR \ C 0.81 0.19 0.00 1.70 0.28 0.41
OCR (ours) 0.91 0.09 0.00 1.22 0.59 0.58

PS + WTW

No Filter 0.72 0.28 0.00 1.36 0.00 0.43
OCR \ DE 0.78 0.22 0.00 0.84 0.61 0.42
OCR \ C 0.90 0.09 0.01 1.21 0.18 0.44
OCR (ours) 1.00 0.00 0.00 0.97 0.42 0.66

NVE + WTW

No Filter 0.20 0.80 0.00 1.70 0.00 0.31
OCR \ DE 0.21 0.79 0.00 0.93 0.61 0.37
OCR \ C 0.45 0.55 0.00 1.32 0.28 0.39
OCR (ours) 0.91 0.08 0.01 1.04 0.47 0.62

Fig. 5: (In color) Safety rates across settings (1,000 trials).

unknown obstacles) but also to dynamics uncertainty, as we
discuss next.

2) Robustness to Dynamical Uncertainty: Results in Table
III demonstrate the ability of the OCR framework to handle
variation in the system dynamics. Recall that each environment
has its own payload and friction parameters, which signif-
icantly influence the dynamics of the system. Additionally,
different low-level policies have different abilities to track
velocity and yaw rate commands. Despite these challenges,
the OCR framework consistently achieves a high success rate
without a priori access to the underlying nominal policy or
simulation environments.

To study robustness more thoroughly, we plot safety rates
across environment settings for different frameworks using
the ABS-Agile policy as the nominal policy in Figure 5. The

OCR framework achieves high safety rates across all settings,
surpassing the ABS baseline particularly in low-friction envi-
ronments, but only when using disturbance estimation. This
leads us to conclude that disturbance estimation plays a key
role in the robustness of the proposed framework. For all
numerical results, see Appendix B.

Figure 6 (a) visualizes the behavior of the OCR and ABS
frameworks in an environment with high perturbations in dy-
namics (a payload of −0.9 kg and a friction of 0.5). The OCR
framework estimates large disturbances online and accordingly
intervenes to steer the system away from collision. The
adaptation facilitated by the disturbance estimation module is
visualized in Figure 6 (b) in a hand-designed environment
with a sudden friction change in the blue region. Corre-
spondingly, the proposed framework automatically estimates
larger disturbance bounds in this region of low friction (the
purple point), which subsequently, leads to a more aggressive
safety filter to ensure system safety. The ABS framework, in
contrast, intervenes later and allows the quadruped to approach
dangerously close to the wall obstacle, eventually leading to
collision.

3) Further Comparisons with ABS: We now further com-
pare the proposed OCR framework with ABS, as it leverages a
similar safety filtering framework. One of the key advantages
of the OCR framework is that it grants the user the freedom

Fig. 6: OCR (green/red : nominal/filtered) and ABS (white/black : nominal/filtered) frameworks in (a) a validation environment
with a payload of −0.9 kg and a friction of 0.5 and (b) a hand-designed obstacle configuration with a region of low friction
(blue). In (b), we plot the evolution of the estimated disturbance bound in position d̄epx,py , as well as the OCR-VN predictions
at two different states (orange, purple).
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Fig. 7: OCR (green/red : nominal/filtered) and ABS (white/black : nominal/filtered) frameworks in environments with hand-
designed obstacle configurations. In (b), the OCR framework is used without calibration due to the highly cluttered setting.

to choose the most appropriate nominal controller for the
task at hand without needing to recompute safety assurances,
whereas the ABS framework is specific to a particular nominal
policy. We demonstrate this utility in Figure 7 (a), where the
robot must navigate two sharp turns. The OCR framework
successfully completes the task using the PS + WTW nominal
controller. On the other, the ABS baseline gets stuck, because
the learning-based ABS-Agile policy is not suited for the
required navigation style.

The policy-independence of the OCR framework is a con-
sequence of the optimality of the underlying value function
synthesized during the training phase described in Section
V-A. We demonstrate the advantages of using the optimal
value function in Figure 7 (b) in a hand-designed “dead-end”
environment. Since the setting is highly cluttered, we use OCR
\ C to reduce conservatism. We remark that this remains a fair
evaluation with respect to the ABS baseline because OCR \
C retains a comparable safety rate to ABS in Table III.

Using a control search guided by a policy-conditioned
value function, the ABS baseline suffers from unnecessary
interventions and suboptimality related to the quality of the
ABS-Agile policy. On the other hand, OCR framework reasons
about the optimal safety behavior (regardless of the nominal
policy), reducing unnecessary interventions and permitting
task progress.

VII. HARDWARE EXPERIMENTS

We deploy the OCR framework with nominal controllers
from Section VI-A on a Unitree Go1 quadruped robot
equipped with an onboard Slamtec RPLiDAR A2 sensor. The
quadruped maintains an estimate of its state in the global frame
via tinySLAM [81], a LiDAR-based simultaneous localiza-
tion and mapping (SLAM) algorithm, which is subsequently
used for disturbance bound estimation.

A. Hardware Setups

We first quantitatively and qualitatively compare the pro-
posed framework and all baselines in two different experiment
settings. In the first setting, the robot needs to navigate through
an obstacle maze consisting of walls and circular obstacles.
The second setting is the same as the first, except that a
rectangular region directly preceding the first obstacle has a
very low friction due to an oil-soaked tarp, to test the dynamic

safety adaptivity of different methods. The setups are shown
in Figure 8. In our experiments, we also include results on a
few additional nominal policies to stress-test our system.

Additionally, we qualitatively test our framework in a di-
verse set of real-world experiments, including cluttered envi-
ronments, rough terrains, external disturbances, and adversar-
ial human teleoperation.

B. Hardware Results

The hardware results listed in Table IV reaffirm the findings
in simulation. Namely, the OCR framework is effective at
safeguarding a diverse set of controllers. The framework also
displays a significant robustness to changes in the system
dynamics, as evidenced by the high success rates even in the
slippery condition, where the ABS baseline fails. Figure 8 il-
lustrates the difference between the OCR and ABS frameworks
in the slippery condition. Whereas the ABS baseline intervenes
too late to maintain safety, the OCR framework slows down
the robot and turns in time to avoid collision.

We further demonstrate the capabilities of the framework in
a variety of real-world scenarios. Videos of these demonstra-
tions can be found on the project website listed above Figure
1. Many of these scenarios are illustrated in Figure 1.

1) Safeguarding Different Nominal Controllers: Figure 1
illustrates the ability of the OCR framework to automati-
cally safeguard a variety of high-level planners, including (a)
learning-based, (c, f, k) model-based, (b, d, g, h, i, j) human
teleoperated, and (e) blind planners, on top of different low-
level locomotion policies, including (a, f, i, j, k) learning-based
and (b, c, d, e, g, h) model-based policies.

2) External Disturbances: Subplot (f) in Figure 1 demon-
strates the framework’s ability to preserve safety even under
forceful disturbances. After receiving a kick while on a slip-
pery floor, the framework guides the robot to turn sharply from
the obstacle and move away to maintain safety.

3) Adversarial Human Teleoperation: In subplot (h) of
Figure 1, an adversarial human teleoperator attempts to collide
the robot into a pillar multiple times. The filter activates only
when necessary and causes the robot to veer to avoid collision
while respecting the commanded input as much as possible.

4) Dynamic Obstacles: The framework’s ability to react to
dynamic obstacles in real time is illustrated in subplots (e, k)
in Figure 1. The robot slows down from a velocity of roughly
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TABLE IV: Hardware Results for OCR and ABS across Nominal Controllers (10 Trials)

Normal Condition Slippery Condition
Controller Filter # Successes ↑ # Collisions ↓ # Timeouts ↓ # Successes ↑ # Collisions ↓ # Timeouts ↓

ABS-Agile
No Filter 9 1 0 1 9 0
ABS 9 1 0 2 8 0
OCR (ours) 10 0 0 8 1 1

PS + WTW No Filter 5 5 0 1 9 0
OCR (ours) 9 1 0 8 2 0

NVE + WTW No Filter 0 10 0 0 10 0
OCR (ours) 9 0 1 8 2 0

PS + MPC No Filter 5 5 0 0 10 0
OCR (ours) 10 0 0 9 1 0

NVE + MPC No Filter 0 10 0 0 10 0
OCR (ours) 9 0 1 7 3 0

Fig. 8: Hardware experiments with a slippery region outlined in white. (Left) The ABS baseline collides due to drifting caused
by the slippery floor. (Right) The OCR framework (green/red : nominal/filtered) stops and turns in time to prevent a collision,
demonstrating superior robustness to changes in the system dynamics.

2 m/s to provide enough turn radius to avoid the box placed
suddenly by a human in front of the robot in subplot (e).

5) Cluttered Indoor Environments: The robot navigates
narrow corridors in subplots (a, b, c) in Figure 1. Due to
the conservatism of the OCR framework, a few adjustments
are needed for good performance in highly cluttered settings.
First, we discard LiDAR readings outside of a front-facing
cone spanning π/2 rad. We believe this is necessary because
of a shift in distribution of LiDAR readings from what is
seen during training, which has sparse obstacles and no walls.
Second, we use the uncalibrated output of the OCR-VN. We
theorize that the conservatism of the OCR framework is an
inherent result of using a worst-case analysis for disturbance,
which makes the safety problem especially difficult in crowded
settings. We defer addressing these limitations to future work.

6) Rough Terrain: The robot avoids collisions on rough
outdoor terrains in subplots (d, i, j) of Figure 1, further
highlighting the ability of the proposed framework to adapt
to dynamics uncertainties.

VIII. LIMITATIONS

Although our proposed framework achieves high safety rates
in both simulation and hardware results in Tables III and

IV, the framework still exhibits a nonzero collision rate. We
attribute this to several failure modes of the framework that
we identify and discuss next.

First, during deployment, the system may experience dis-
turbances that exceed the estimated disturbance bounds which
the framework is designed to safeguard against. Furthermore,
there is an unavoidable delay before environment changes will
reflect in the estimated disturbance bounds. During this delay
period, the system can encounter failure before the framework
has a chance to adapt.

Second, the OCR-VN can contain learning errors that are
critical to safety. While the calibration scheme presented in
Section V-A4 can help us better understand the degree of
these errors, we cannot directly extrapolate the theoretical
guarantees from a validation dataset to the real world, due to
potential distribution shifts. It would be interesting to explore
online calibration methods to overcome this challenge.

In addition to these failure modes which affect safety, there
are several limitations of the framework that affect its perfor-
mance. For some low-level locomotion policies and environ-
ment settings, the error in the reduced-order dynamics model
can be very large, leading to high dynamical uncertainty. Large
estimated disturbances can also appear as an artifact of latency
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and state estimation issues with real-world hardware. The
resulting disturbance bounds can produce overly conservative
BRTs which severely inhibit progress by the system. In highly
cluttered environments, this can manifest as stalling behavior.

The conservatism of the framework is also partly a conse-
quence of our choice to model the dynamics uncertainty as
adversarial in nature. Future works can explore approaches to
overcome these issues by using proactive methods of modeling
and estimating dynamics and disturbances, for example by
using observations of the environment or learning controller-
specific dynamics to anticipate future system behavior and
reduce uncertainty, as well as considering different charac-
terizations of disturbances.

IX. CONCLUSION

We propose the OCR framework, which uses an adaptive
safety filter to robustly ensure the safety of a quadruped robot
running an a priori unknown locomotion policy in a priori
unknown environments using only LiDAR observations. The
offline training of the OCR-VN is done without a priori access
to the controllers or a simulator - hence, “One Filter to Deploy
Them All”. In simulation and hardware experiments on a
Unitree Go1 quadruped, we demonstrate the superior efficacy
of the proposed approach to ensure, in zero-shot fashion,
the safety of numerous controllers across diverse environment
configurations and perturbed dynamics. Videos demonstrating
the efficacy of the proposed approach across various settings
can be found on the project website listed above Figure 1.
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APPENDIX A
PROOF OF THEOREM 1

Proof. Theorem 1 is a straightforward application of the
split conformal prediction method detailed in [79], where we
set their “input x” as our network input (xr, d̄

e
r, o

e), their
“output y” as our true value V (xr; e), their “score function
s(x, y)” as our prediction error Vψ(xr, d̄er, o

e)−V (xr; e), their
“calibration size n” as our calibration size N , their “error
rate α” in terms of our number of outliers k as k+1

N+1 , and
their “quantile q̂” as our calibration level δ. Indeed, recall that
we compute δ as the N−k

N = N−(α(N+1)−1)
N = (N+1)(1−α)

N
quantile of the calibration scores {si}Ni=1, which is precisely
how q̂ is computed in [79]. Section 3.2 in [79] yields:

P
(xr,d̄er,o

e)

(
Vψ(xr, d̄

e
r, o

e)− V (xr; e) ≤ δ
)
∼ B(N−k, k+1),

(17)
where B is the Beta distribution. Line (17) tells us that the
probability that the OCR-VN overestimates the true value by at
most δ follows a Beta distribution that depends on the number
of calibration points N and outliers k used to determine δ. We
are interested in lower bounding this probability by 1−ϵ with a
confidence of at least 1−β. Fortunately, since the relationship
on Line (17) is known to us, we can compute the k needed to
satisfy a desired ϵ and β. The cumulative distribution function
of the Beta distribution on Line (17) evaluated at x is given
in terms of k by the incomplete beta function ratio Ix(N −
k, k+1) =

∑N
j=N−k

(
N
j

)
xj(1−x)N−j from DLMF, (8.17.5)

[82]. Changing the index i = N−j yields Ix(N−k, k+1) =∑k
i=0

(
N
N−i

)
xN−i(1−x)N−(N−i) =

∑k
i=0

(
N
i

)
xN−i(1−x)i.

Thus, Line (17) is equivalent to the claim that for any violation
parameter ϵ ∈ (0, 1) and confidence parameter β ∈ (0, 1),

P
(xr,d̄er,o

e)

(
Vψ(xr, d̄

e
r, o

e)− V (xr; e) ≤ δ
)
≥ 1− ϵ holds with

probability at least 1 − β over the draws of the samples as
long as β ≥ I1−ϵ(N − k, k + 1) =

∑k
i=0

(
N
i

)
ϵi(1 − ϵ)N−i.

This is the same requirement on k as presented in Theorem 1.

APPENDIX B
ALL EXPERIMENT RESULTS

Simulation experiments are conducted in easy, medium,
and hard conditions to determine the effect of increasing
dynamical variation on framework efficacy. The experiment
difficulty determines the range of possible payload and friction
parameters, as listed in Table V. As the difficulty increases,
the parameter ranges stray further from normal conditions. We
report results for the hard condition in Section VI in the main
text. All simulation results can be found in Table VI.

All hardware results can be found in Table VII.

https://github.com/unitreerobotics/unitree_ros
https://github.com/unitreerobotics/unitree_ros
https://github.com/StanfordASL/hj_reachability
https://github.com/StanfordASL/hj_reachability
http://dx.doi.org/10.1561/2200000101
http://dx.doi.org/10.1561/2200000101
https://proceedings.mlr.press/v242/lin24a.html
https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://dlmf.nist.gov/8.17.E5
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TABLE V: Simulation Environment Parameters

Payload Range (kg) Friction Range

Easy Medium Hard Easy Medium Hard
[0, 0] [−1, 1] [−1,−0.5] ∪ [0.5, 1] [1, 1] [0.5, 1.5] [0.5, 0.75] ∪ [1.25, 1.5]

TABLE VI: All Simulation Results (100 Trials)

Difficulty Controller Filter Success Rate ↑ Collision Rate ↓ Timeout Rate ↓ v̄ (m/s) ↑ r̄ ↓ q̄ (m) ↑

Easy

ABS-Agile

No Filter 0.89 0.11 0.00 2.12 0.00 0.44
ABS Framework 0.88 0.12 0.00 2.08 0.02 0.44
OCR \ DE 0.51 0.21 0.28 0.86 0.68 0.44
OCR \ C 0.88 0.12 0.00 1.77 0.26 0.46
OCR (ours) 0.95 0.05 0.00 1.24 0.60 0.56

PS + WTW

No Filter 0.80 0.20 0.00 1.46 0.00 0.44
OCR \ DE 0.85 0.15 0.00 0.84 0.62 0.43
OCR \ C 0.91 0.09 0.00 1.31 0.14 0.42
OCR (ours) 1.00 0.00 0.00 0.99 0.46 0.62

NVE + WTW

No Filter 0.25 0.75 0.00 1.82 0.00 0.36
OCR \ DE 0.22 0.78 0.00 1.23 0.50 0.40
OCR \ C 0.46 0.54 0.00 1.53 0.22 0.37
OCR (ours) 0.98 0.02 0.00 1.06 0.48 0.58

Medium

ABS-Agile

No Filter 0.83 0.17 0.00 2.12 0.00 0.43
ABS Framework 0.87 0.13 0.00 2.05 0.02 0.43
OCR \ DE 0.53 0.27 0.20 1.02 0.61 0.45
OCR \ C 0.84 0.16 0.00 1.74 0.27 0.44
OCR (ours) 0.93 0.07 0.00 1.27 0.57 0.55

PS + WTW

No Filter 0.81 0.19 0.00 1.42 0.00 0.46
OCR \ DE 0.81 0.19 0.00 0.86 0.61 0.44
OCR \ C 0.83 0.17 0.00 1.33 0.12 0.46
OCR (ours) 0.99 0.01 0.00 1.00 0.42 0.65

NVE + WTW

No Filter 0.25 0.75 0.00 1.79 0.00 0.39
OCR \ DE 0.22 0.78 0.00 1.11 0.56 0.40
OCR \ C 0.42 0.58 0.00 1.47 0.22 0.39
OCR (ours) 0.97 0.03 0.00 1.05 0.50 0.57

Hard

ABS-Agile

No Filter 0.75 0.25 0.00 2.10 0.00 0.41
ABS Framework 0.80 0.20 0.00 2.03 0.03 0.41
OCR \ DE 0.40 0.35 0.25 0.98 0.62 0.41
OCR \ C 0.81 0.19 0.00 1.70 0.28 0.41
OCR (ours) 0.91 0.09 0.00 1.22 0.59 0.58

PS + WTW

No Filter 0.72 0.28 0.00 1.36 0.00 0.43
OCR \ DE 0.78 0.22 0.00 0.84 0.61 0.42
OCR \ C 0.90 0.09 0.01 1.21 0.18 0.44
OCR (ours) 1.00 0.00 0.00 0.97 0.42 0.66

NVE + WTW

No Filter 0.20 0.80 0.00 1.70 0.00 0.31
OCR \ DE 0.21 0.79 0.00 0.93 0.61 0.37
OCR \ C 0.45 0.55 0.00 1.32 0.28 0.39
OCR (ours) 0.91 0.08 0.01 1.04 0.47 0.62
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TABLE VII: All Hardware Results (10 Trials)

Condition Controller Filter # Successes ↑ # Collisions ↓ # Timeouts ↓ v̄ (m/s) ↑ r̄ ↓ q̄ (m) ↑

Normal

ABS-Agile
No Filter 9 1 0 1.67 0.00 0.29
ABS 9 1 0 1.59 0.02 0.29
OCR (ours) 10 0 0 0.94 0.64 0.43

PS + WTW No Filter 5 5 0 1.53 0.00 0.32
OCR (ours) 9 1 0 0.80 0.58 0.61

NVE + WTW No Filter 0 10 0 N/A N/A N/A
OCR (ours) 9 0 1 0.77 0.61 0.55

PS + MPC No Filter 5 5 0 1.55 0.00 0.33
OCR (ours) 10 0 0 0.81 0.54 0.58

NVE + MPC No Filter 0 10 0 N/A N/A N/A
OCR (ours) 9 0 1 0.93 0.56 0.54

Slippery

ABS-Agile
No Filter 1 9 0 1.38 0.00 0.33
ABS 2 8 0 1.49 0.03 0.22
OCR (ours) 8 1 1 0.90 0.60 0.38

PS + WTW No Filter 1 9 0 1.04 0.00 0.52
OCR (ours) 8 2 0 0.74 0.65 0.45

NVE + WTW No Filter 0 10 0 N/A N/A N/A
OCR (ours) 8 2 0 0.61 0.68 0.39

PS + MPC No Filter 0 10 0 N/A N/A N/A
OCR (ours) 9 1 0 0.80 0.54 0.56

NVE + MPC No Filter 0 10 0 N/A N/A N/A
OCR (ours) 7 3 0 0.82 0.57 0.32
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