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Fig. 1: Our proposed observation-conditioned reachability-based (OCR) safety-filter framework automatically safeguards
different controllers in diverse settings for agile planar navigation tasks without a priori access to the controllers or environments.
A trained OCR value network governs the switch between nominal and filtered control using an onboard LiDAR sensor. The
framework successfully safeguards a variety of high-level planners, including (a) learning-based, (c, f, k) model-based, (b, d,
g, h, i, j) human teleoperated, and (e) naive planners, on top of different low-level locomotion policies, including (a, f, i, j,
k) learning-based and (b, c, d, e, g, h) model-based policies. Safety is maintained despite (a, b, c) narrow corridors, (d, i, j)
rough terrains, (e, k) dynamic obstacles, (f) external disturbances, and (h) collision-seeking human teleoperation.

Abstract—As learning-based methods for legged robots rapidly
grow in popularity, it is important that we can provide safety as-
surances efficiently across different controllers and environments.
Existing works either rely on a priori knowledge of the environ-
ment and safety constraints to ensure system safety or provide
assurances for a specific locomotion policy. To address these
limitations, we propose an observation-conditioned reachability-
based (OCR) safety-filter framework. Our key idea is to use
an OCR value network (OCR-VN) that predicts the optimal
control-theoretic safety value function for new failure regions
and dynamic uncertainty during deployment time. Specifically,
the OCR-VN facilitates rapid safety adaptation through two
key components: a LiDAR-based input that allows the dynamic
construction of safe regions in light of new obstacles and
a disturbance estimation module that accounts for dynamics
uncertainty in the wild. The predicted safety value function
is used to construct an adaptive safety filter that overrides
the nominal quadruped controller when necessary to maintain
safety. Through simulation studies and hardware experiments
on a Unitree Go1 quadruped in agile planar navigation tasks,
we demonstrate that the proposed framework can automatically
safeguard a wide range of hierarchical quadruped controllers,
adapts to novel environments, and is robust to unmodeled
dynamics without a priori access to the controllers or environments
- hence, “One Filter to Deploy Them All”. The experiment videos

can be found on the project website here: https://sia-lab-git.
github.io/One Filter to Deploy Them All.

Index Terms—Hamilton-Jacobi reachability analysis, safety fil-
tering, adaptive safety, robust verification, safe legged locomotion.

I. INTRODUCTION

Legged robots hold immense potential across diverse real-
world applications, such as hazardous inspections [1], [2],
search and rescue missions [3], [4], entertainment [5], [6],
and public safety [7]. A fundamental requirement in these
scenarios is the ability to operate reliably in cluttered and a pri-
ori unknown environments. However, achieving this reliability
poses a significant challenge, as legged locomotion controllers
must balance high performance with safety (e.g., avoiding
collisions) during deployment. This work focuses on designing
quadrupedal controllers that enable safe, collision-free planar
navigation while maintaining agility despite uncertainties in
obstacles and dynamics.

Existing approaches to designing (safe) controllers for
legged locomotion can be broadly categorized into model-
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based and reinforcement learning (RL)-based methods. Model-
based methods provide provable safety guarantees using
frameworks such as model predictive control (MPC), bar-
rier functions, and reachability analysis [8]–[12]. However,
model mismatches and online computational burden limit the
applicability of these approaches in the wild. In contrast,
RL-based controllers have demonstrated impressive agility
in complex terrains and unstructured environments [13]–
[19], [19]–[22] However, these controllers typically prioritize
agility, treating collision avoidance as a soft constraint during
training, which can result in unsafe behaviors in cluttered or
unseen environments.

To address these shortcomings, recent works have explored
safety critics and backup policies to safeguard RL-based
controllers [23]–[30]. These approaches precompute or learn
safety critics that indicate when the nominal policy is deemed
unsafe. While promising, existing methods often fail to ensure
safety beyond the distribution of dynamics, environments, or
locomotion policies encountered during training. Additionally,
learning reliable backup policies for unknown environments
remains a persistent challenge.

In this work, we propose an Observation-Conditioned
Reachability (OCR) safety-filter framework, designed to in-
tegrate the agility of a nominal robot policy with robust safety
for planar navigation tasks in environments with unknown ob-
stacles and dynamical uncertainties. Our key idea is to use an
OCR Value Network (OCR-VN), which predicts the optimal
control-theoretic safety value function for new failure regions
and dynamical uncertainties encountered during deployment.
Specifically, the proposed framework achieves this adaptability
through two key components: first, it leverages an observation-
based exteroceptive input (a LiDAR scan in this work) to
dynamically adapt the safety value function directly from raw
sensory inputs, enabling robust collision avoidance in different
scenarios with onboard sensing and computation. Second, it
employs a disturbance estimation module to compute bounds
on dynamics uncertainty (e.g., due to slippage, modeling
inaccuracies, or low-level tracking errors) using recent state-
action histories and adapts the robustness of the safety value
function based on these bounds.

The OCR framework predicts when a nominal policy might
violate safety and provides corrective control commands for
the robot if necessary. A key strength of the proposed frame-
work is its generality – it can be deployed with a wide variety
of nominal legged locomotion policies without requiring any
retraining or policy-specific tuning. Additionally, we propose a
Hamilton-Jacobi reachability-based method to train the OCR-
VN, ensuring robust and efficient safety filtering. We validate
our approach through extensive simulations and real-world
experiments on a Unitree Go1 quadruped, demonstrating that
the OCR framework provides a reliable safety layer across
multiple existing legged locomotion policies (both model-
based and learning-based) and a variety of environments,
without requiring prior knowledge of the specific policy or
environment. In summary, our key contributions are:

• A reachability-based safety-filtering framework that en-
sures safety across diverse quadruped controllers and

environments, without a priori access to the controller
or the environment;

• An online adaptation mechanism that dynamically adapts
the system safety to real-world environment variations
and modeling uncertainties;

• Simulation and hardware experiments demonstrating the
superior efficacy and robustness of the proposed approach
in ensuring safe legged locomotion.

II. RELATED WORKS

A. Safe Legged Locomotion

1) Model-Based Safety: Traditional approaches for obstacle
avoidance use collision-free motion planning techniques in the
configuration space [31]–[33]. They satisfy kinematic safety
constraints but do not consider the dynamics of the system,
limiting motions to slow quasi-static trajectories. However,
recent advances in agile locomotion and its applications have
resulted in the need to consider dynamics.

Model-based approaches, such as model predictive control
(MPC), use hand-designed or learned dynamics models to
compute optimal maneuvers that are dynamically feasible and
satisfy safety constraints [26], [34]–[39]. Despite their impres-
sive performance, such model-based approaches are generally
computationally intensive for online settings and can run
into safety feasibility issues, especially in cluttered obstacle
environments. Additionally, although they often perform well
in settings that are captured accurately by their models, the
safety guarantees are not robust to model mismatches that a
robot might encounter in the wild [13], [40].

2) RL-Based Safety: Given the challenges associated with
existing model-based approaches for agile locomotion, model-
free RL-based approaches have emerged as popular alterna-
tives. RL-based approaches have found remarkable success in
synthesizing efficient and robust locomotion in the real world,
especially as the availability of high-fidelity simulators has
increased [41], [42]. They are well-suited to handle complex
high-dimensional systems, multimodal feedback signals, and
difficult-to-specify task objectives [43].

Previous studies have optimized locomotion policies for
specific skills such as agility [44], [45], resilience [46]–
[48], and difficult terrain traversal [13], [20], [21], [49]–
[55]. However, these works typically focus on maximizing
agility without regard to safe navigation. These methods can
be combined with high-level collision-free planners; however,
they suffer from the aforementioned limitations of model-
based controllers and restricted mobility [29], [56]–[58].

Other works consider safe navigation during the learning
process by including a large collision penalty in the reward
function to incentivize collision-avoidance [14], [57], [59]–
[66]. Unfortunately, there are no formal guarantees of safety,
and the synthesized locomotion policies can degrade in safety
when transferred to the real world due to a distribution shift
away from the environments seen during training.

Recently, constrained reinforcement learning (CRL) has
emerged as a prominent framework for incorporating safety
considerations into policy learning by formulating decision-
making problems as constrained Markov Decision Processes
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(CMDPs) [67]. CRL methods aim to optimize performance
while satisfying constraints, often expressed as cost or risk
thresholds, either through Lagrangian-based optimization, re-
ward shaping, or primal-dual approaches [68]–[71]. While
CRL is attractive for its ability to learn directly from en-
vironment interactions, it typically provides probabilistic or
empirical safety assurances within the distribution of training.
Thus, the resulting policies are not automatically robust to new
environments with unseen dynamical uncertainties. This can
lead to a loss of safety assurances in practice.

3) Certificate-Based Safety: In order to provide rigorous
safety assurances, many works have proposed certificate-based
safety methods within both model-based [26], [34], [35], [37],
[39] and RL-based [23]–[25], [27]–[30], [72] frameworks,
most often using control barrier functions or reachability-based
value functions. These methods are typically reliant on the
offline availability of a certificate function or dynamics, which
limits their applicability to complex real-world systems.

Some recent works learn adaptive safety certificates and
recovery policies to ensure safety at runtime [23]–[25], [27]–
[29], [72]. He et al. [29] propose Agile But Safe (ABS), an
approach that co-designs performance and control-theoretic
safety controllers via RL and switches between them as
necessary to maintain safety. Since the computed safety as-
surances are policy-dependent, they can be suboptimal and
overly conservative, depending on the quality of the nominal
policy. Moreover, the safety controller needs to be retrained
as the policy is fine-tuned, which can be cumbersome and
time-consuming. Additionally, since approaches like ABS lack
active mechanisms to account for unmodeled dynamics during
deployment (e.g., slippage), the computed safety assurances
are valid only within the distribution of environments and
locomotion policies seen during training. These limitations
are especially relevant due to the rising popularity of diverse
learning-based policies, whose safety assurances must be
updated as they are fine-tuned.

Our work most closely aligns with certificate-based safety
methods like ABS, but we address several existing limitations.
Instead of computing the policy-conditioned safety function,
we compute the optimal control-theoretic safety controller via
Hamilton-Jacobi (HJ) reachability analysis. This enables us
to construct a safety filter for any nominal controller without
needing to recompute the safety assurances. We discard the
need for high-fidelity simulators by using a reduced-order
system and robustly handle the model gap as an adversarial
disturbance in the dynamics. By estimating and adapting to
disturbance bounds during deployment, our proposed frame-
work is able to ensure safety more robustly across a range of
settings and policies compared to previous works.

B. Reachability-Based Safety Filters

This work extends the class of Hamilton-Jacobi (HJ)
reachability-based filters [73]–[75] which ensure safety at
deployment by overriding a nominal controller when necessary
to preserve safety. Due to the computational burden, traditional
reachability-based safety filters are typically constructed of-
fline for systems assumed to be known a priori [76]. In the

case of quadrupedal navigation, a quadruped using a specific
locomotion policy is often abstracted as a reduced-order sys-
tem for computational tractability. The dynamics of the system
depend on the locomotion policy; thus, reachability-based
filters will not readily safeguard different locomotion policies.
Additionally, it is challenging to adapt safety assurances to dif-
ferent obstacle configuration and terrain properties due to the
computational burden [77], [78]. This work overcomes these
limitations by distilling the safety solutions for a wide range of
system settings into an Observation-Conditioned Reachability-
based Value Network (OCR-VN). During deployment, the
robot adapts by querying the trained OCR-VN with the current
state, control, and observation history.

1) Connections to Control Barrier Functions: As explained
in Section IV-B, we employ reachability-based safety filters.
Readers may notice similarities between this type of filter
and the popular CBF-QP formulation [79]. This connection
is not coincidental: the infinite-time value functions computed
via HJ reachability satisfy the conditions of valid CBFs [80].
However, our approach inherits several important advantages.
First, HJ reachability provides a constructive framework for
synthesizing optimal certificates for general nonlinear systems,
whereas traditional CBF methods lack such a procedure [76].
Second, HJ reachability is designed to account for worst-
case disturbances, which is crucial for safety-critical settings.
Finally, the QP induced by the HJ value function is guaranteed
to remain feasible, unlike standard CBF-QPs that may suffer
infeasibility under control constraints [73]. These distinctions
motivate our choice to build upon reachability-based safety
filters in the proposed OCR framework.

TABLE I: Nomenclature

Symbol Definition.
t, T Time, time horizon.
e ∈ E Environment.
x ∈ X State.
u ∈ U Control input.
d ∈ D Disturbance input.
f System dynamics.
π, πhigh, πlow Hierarchical, high-level, and low-level policies.
ξπx,t(τ) State achieved at time τ by starting at initial state

x at time t and applying policy π over [t, τ ].
F , l Failure set and function.
o ∈ O Observation.
xr ∈ Xr ⊆ X , fr Reduced-order state and dynamics.
ω = (v, w) Twist ω consisting of velocity v and yaw rate w.
d̄px,py , d̄pθ Disturbance bound in px, py and in pθ .
d̄r = [d̄px,py , d̄pθ ] Disturbance bound for reduced-order system.
V , Vψ Ground-truth and learned value functions.

Abbreviation Definition.
OCR Observation-conditioned reachability.
ABS Agile But Safe [29].
WTW Walk-These-Ways [21].
MPC Model predictive control policy by Unitree [81].
PS Predictive sampling-based planner.
NVE Naive planner.
HMN Human-teleoperated planner.

III. PROBLEM SETUP

See Table I for notation. In this work, we are interested
in ensuring the safety of a quadruped robot for agile planar
navigation tasks in an a priori unknown environment e ∈ E .
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Here, e contains all the information needed to inform the
effects of the environment on dynamics, as well as failure
regions. For example, e can include the terrain geometry,
friction coefficients, and obstacle locations.

We model the quadruped as a nonlinear dynamical system
with state x ∈ X , control u ∈ U , and dynamics ẋ = f(x, u; e)
governing how x evolves over time until a final time horizon
T . The dynamics are also affected by the environment e,
e.g., by the effects of a slippery floor. We denote the robot
observations from proprioception and/or exteroception as oex =
h(x; e) ∈ O. For exteroception, we primarily deal with LiDAR
scans in this work, though other sensors can also be used. We
denote the set of failure states as Fe ⊆ X (e.g., collision
states) which the robot is not allowed to enter. The failure
set can be represented by the zero-sublevel set of a Lipschitz-
continuous function le : X → R, i.e., x ∈ Fe ⇔ le(x) ≤ 0.
Note that Fe, le are also functions of e. We assume that Fe is
static and leave it to future work to handle dynamic obstacles.

Let πnom denote a hierarchical nominal policy for the
quadruped that takes the system history and outputs the robot
control. We assume that πnom consists of a high-level planner,
πhigh

nom , that provides twist commands ω := (v, w) consisting of
a forward velocity v and a yaw rate w. These twist commands
are tracked by a low-level locomotion policy, πlow

nom, e.g., an
RL-based policy [21], [29], [44] or an MPC-based policy [32],
[81], that ultimately provides control inputs u for the robot.
This architecture is popular in the legged robotics literature
where πhigh

nom is typically designed for collision avoidance and
navigation, and πlow

nom could be an agile locomotion policy that
can handle different terrains that the robot might encounter.

Let ξπx,e,t(τ) denote the state achieved at time τ ∈ [t, T ]
by starting at initial state x at time t and applying the
control policy π over [t, τ ] in environment e. Our goal is to
compute a safe policy πsafe that ensures that the quadruped
remains outside of the failure set at all times, i.e., πsafe :
∀τ ∈ [0, T ], ξπsafe

x,e,0(τ) /∈ Fe, while preserving the underlying
performance of πnom to the extent possible. The key challenge
in designing such a policy is that the robot environment (and
hence the failure set and the robot dynamics) is not known
beforehand, necessitating a real-time update of the safety
policy with the environment. A second challenge stems from
the fact that we want the safety framework to be agnostic to
different nominal policies.

IV. BACKGROUND

A. Hamilton-Jacobi Reachability

We build upon Hamilton-Jacobi (HJ) reachability analysis,
a popular formal verification tool for computing safety guar-
antees for general nonlinear dynamical systems [82], [83].
For reachability analysis, we will consider a more general
form of dynamics ẋ = f(x, u, d), where d ∈ D represents
the disturbance. Later on, we will use d to model potential
uncertainty in the system dynamics model. We also omit the
dependence on environment for now for brevity purposes.

HJ reachability analysis is concerned with computing the
system’s initial-time Backward Reachable Tube, which we
denote as BRT. We define BRT as the set of all initial states

x ∈ X starting from which, for all control signals u(·), there
exists a disturbance signal d(·) such that the system will
inevitably enter the failure set F within the time horizon [0, T ]:

BRT := {x ∈ X : ∀u(·), ∃d(·), ∃τ ∈ [0, T ], ξ
u(·),d(·)
x,0 (τ) ∈ F}.

(1)
By ensuring that the system remains outside of BRT, we
guarantee system safety for the time horizon T .

In HJ reachability, computing BRT is formulated as a robust
optimal control problem. First, we implicitly represent the
failure set F by a failure function l(x) whose zero-sublevel
set yields F : F = {x ∈ X : l(x) ≤ 0}. l(x) is commonly
the signed distance function to F . Next, we define the cost
function corresponding to a control signal u(·) and disturbance
signal d(·) to be the minimum of l(x) over the trajectory
starting from state x and time t:

Ju(·),d(·)(x, t) := min
τ∈[t,T ]

l(ξ
u(·),d(·)
x,t (τ)). (2)

Since the control aims to avoid F under worst-case distur-
bance, the value function corresponding to this robust optimal
control problem is:

V (x, t) := max
u(·)

min
d(·)

Ju(·),d(·)(x, t). (3)

By defining our optimal control problem in this way, we
can easily recover BRT using the value function. The value
function being nonpositive implies that the failure function is
nonpositive somewhere along the optimal trajectory, or in other
words, that the system will inevitably enter F . Conversely, the
value function being positive implies that there exists a control
signal that will prevent the system from entering F even under
the worst-case disturbance signal. Thus, BRT is computed as
the zero-sublevel set of the initial-time value function:

BRT = {x ∈ X : V (x, 0) ≤ 0}. (4)

The value function in Equation (3) can be computed using
dynamic programming, resulting in the following final value
Hamilton-Jacobi-Isaacs Variational Inequality (HJI-VI):

min{DtV (x, t) +H(x, t,∇V (x, t)), l(x)− V (x, t)} = 0,

V (x, T ) = l(x), ∀t ∈ [0, T ].
(5)

DtV (x, t) and ∇V (x, t) represent the temporal derivative and
spatial gradient of the value function V (x, t), respectively. The
Hamiltonian H(x, t,∇V (x, t)) encodes how the control and
disturbance interact with the system dynamics:

H(x, t,∇V (x, t)) := max
u∈U

min
d∈D

∇V (x, t) · f(x, u, d). (6)

Under mild assumptions, the value function computed as the
solution to Equation (5) is bounded, Lipschitz continuous, and
differentiable almost everywhere [83]. The value function also
induces the optimal safety controller:

u∗(x, t) := argmax
u∈U

min
d∈D

∇V (x, t) · f(x, u, d). (7)

Intuitively, the optimal safety controller aligns the system
dynamics in the direction of the value function’s gradients,
thus steering the system towards higher-value states, i.e., away
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Fig. 2: The OCR framework. (Left) During training, we generate environments with random obstacles and disturbance bounds.
The OCR-VN is trained to predict the value function (visualized over a grid) using the disturbance bound, the LiDAR reading,
and the state. (Right) During deployment, the OCR-VN is queried with the observed LiDAR reading, the disturbance bound
estimated using the most recent state and action history, and the current state estimate to construct an adaptive safety filter.

from F . An important result of HJ reachability theory is
that safety is guaranteed despite worst-case disturbances if
the system starts outside of BRT and applies the control in
Equation (7) at the BRT boundary [73].

B. HJ Reachability-Based Safety Filtering

In this work, we will use HJ reachability analysis to
maintain the safety of the quadruped robot during deployment
via HJ reachability-based safety filtering, where the computed
safety value function is used to construct a safety filter that
guarantees system safety. While there are many different types
of safety filters that can be constructed, we use the smooth
least-restrictive safety filter, which aims to maximally preserve
the underlying performance of a given nominal policy πnom by
intervening as seldomly and as lightly as possible [73]. When
outside of the system BRT, the smooth least-restrictive filter
πsafe outputs the nominal control. At the boundary of the BRT,
πsafe outputs a safe control as close as possible to the nominal
control by solving what amounts to a quadratic program (QP)
for control-affine systems.

πsafe(x, t) =

{
πnom(x, t), V (x, t) > 0

πQP(x, t), V (x, t) = 0,
(8)

where πQP(x, t) is obtained by solving:

argmin
u∈U

||u− πnom(x, t)||22
s.t. DtV (x, t) + min

d∈D
∇V (x, t) · f(x, u, d) = 0.

(9)

Intuitively, the constraint on Line (9) enforces safe control
of the system at the BRT boundary, where the system safety
could be in jeopardy. It has been shown that the filter defined
by Equation (8) is guaranteed to maintain system safety under
worst-case disturbances as long as the system starts outside of
the BRT [73]. In the next section, we propose to construct an
adaptive version of this safety filter by using an Observation-
Conditioned Reachability-based Value Network (OCR-VN)
that predicts the safety value function for new failure regions
and dynamic uncertainties encountered during deployment.

V. APPROACH

The main difficulty in directly applying traditional HJ
reachability methods in Section IV to the problem in Section
III is that the system dynamics f(x, u; e) and the failure set Fe

are functions of the unknown environment e. Thus, a safety
controller must be able to adapt to both dynamics uncertainty
and environment uncertainty. To overcome this challenge,
we propose the Observation-Conditioned Reachability (OCR)
safety-filter framework, which uses an OCR Value Network
(OCR-VN) to predict a safety value function conditioned
on the recent system and observation history. The online
adaptation is enabled by two key components: a LiDAR-based
exteroceptive input that encodes new obstacle configurations
(see Section V-A3) and a disturbance estimation module (see
Section V-B1). The resulting safety value function is then used
to filter the nominal policy to ensure safety while maintaining
the agility of the underlying policy. Ultimately, our safety
framework provides high-level twist commands, which, when
combined with the low-level nominal policy, maintains the
robot’s safety.

The OCR framework can be divided into two distinct
phases: training and deployment. These are illustrated in
Figure 2. During the training phase, we collect a diverse
dataset of raw LiDAR observations and uncertainty bounds to
train the OCR-VN on. During the deployment phase, we query
the OCR-VN with onboard observations and estimated uncer-
tainty bounds to automatically ensure safety across different
locomotion policies and environments. These two phases are
described in more detail next.

A. Training Phase of the OCR Framework

1) System Dynamics Model: During the training phase, we
aim to distill the ground-truth value functions for a diverse
range of environments e into an OCR-VN. The first difficulty
that we encounter is how to model the full quadruped dy-
namics f(x, u; e), which is high-dimensional and complex.
Our key insight is that many quadruped control schemes are
hierarchically composed of a high-level navigation planner and
a low-level locomotion policy. From the perspective of the
high-level planner, the quadruped, along with its locomotion
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policy, form a system with a reduced-order dynamics model.
Thus, we propose to use a reduced-order dynamics model
fr(xr, ω), where xr ∈ Xr ⊆ X is the reduced state and ω is
the control input of the reduced-order model. We capture any
possible modeling errors of fr(xr, ω) as disturbances in the
system. We propose to estimate bounds on these disturbances
during deployment for robust adaptive safety guarantees.

We set fr(xr, ω) to the dynamics of a 3D Dubins car system
with state xr = (px, py, pθ), where (px, py) is the quadruped’s
2D location, and pθ is the quadruped’s heading. We model
the error in fr(xr, ω) as an unknown additive disturbance der,
which is a function of the underlying environment e. Thus,
the reduced-order dynamics fr(xr, ω, der) is given as:

ṗx = v cos pθ + depx , ṗy = v sin pθ + depy , ṗθ = w + depθ ,

(10)

with the control input ω = (v, w) being a commanded
twist that includes forward velocity v ∈ [vmin, vmax] and
yaw rate w ∈ [wmin, wmax]. The disturbance input der =(
depx , d

e
py , d

e
pθ

)
consists of a bounded additive disturbance

in position ||[depx , d
e
py ]|| ≤ d̄epx,py and a bounded additive

disturbance in heading |depθ | ≤ d̄epθ . We use d̄er to denote the

disturbance bound tuple d̄er =
(
d̄epx,py , d̄

e
pθ

)
, which is a func-

tion of the underlying environment e. Since the disturbances
are additive in all state variables, the disturbance bounds
can always be chosen large enough to contain any possible
modeling errors, although at the cost of model conservatism.
In order to be robust to the modeling error, we assume that
the disturbances are adversarial in nature.

Remark. We adopt a Dubins car model as the reduced-order
dynamics to balance model fidelity with tractability, since grid-
based reachability methods scale poorly to high-dimensional
systems. This simplification is sufficient for capturing the
safety-relevant aspects of agile planar navigation. Importantly,
the OCR framework is agnostic to this choice. Other reduced-
order models and disturbance assumptions may be employed
depending on the desired trade-off between fidelity, conser-
vatism, and computational complexity.

2) Data Generation: Based on our modeling choices in
Section V-A1, we let the underlying environment e =

(
Fe, d̄er

)
consist of the failure set Fe and the disturbance bound d̄er
described in Section V-A1. We generate each environment
e by randomly spawning 2D obstacles at various locations
and sampling a disturbance bound. For each of the generated
environments, we compute the initial-time ground-truth value
function V (xr, 0; e) using the hj_reachability Python
toolbox [84], which we denote as V (xr; e) for brevity. We
compute the converged value function, that is, when we take
the time horizon T → ∞. This ground-truth value function is
then used to generate data for training the OCR-VN.

Specifically, for each training environment, we generate
training pairs

((
xr, d̄

e
r, o

e
)
, V (xr; e)

)
by setting the system

origin to different states in the environment and rendering the
corresponding observation oe at the origin. For each system
origin and its corresponding observation oe, we sample the
value function V (xr; e) and its spatial gradients ∇V (xr; e)

at uniformly random states xr (specified in the frame of the
new system origin) that are not occluded by obstacles. The
collected data is then used to train the OCR-VN via supervised
learning as described in the next section. Details on the specific
parameters of our data generation are provided next.

To generate an environment, we spawn n circular 2D
obstacles, where n is uniformly sampled from {1, ..., 10}. The
radius r of each obstacle is uniformly sampled from [0.1, 1] m.
The location (px, py) of each obstacle is uniformly sampled
from [−5, 5] m × [−5, 5] m. Disturbance bounds d̄epx,py and
d̄epθ are uniformly sampled from [0, 1] m/s and [0, 2] rad/s,
respectively. In this work, we use LiDAR observations which
consists of 100 evenly spaced angles from [−π, π] rad and
clipped to within [0.2, 10] m, determined by hardware limits.

Remark. For training, we model obstacles as circles to
balance computational simplicity with sufficient expressiveness
for LiDAR-based perception. This choice enables efficient
dataset generation while exposing the OCR-VN to diverse
observation patterns. Although circular obstacles are used
in training, the framework generalizes in practice to more
complex geometries (e.g., walls, irregular shapes). Users may
extend the data generation process as needed to suit higher-
dimensional observations or more specialized scenarios.

For obtaining the ground-truth value function, we use a
grid of shape (100, 100, 60) spanning [−5, 5] m × [−5, 5] m
× [−π, π] rad and a time horizon of 2 s, when the value
function approximately converges. The control bounds for the
system are v ∈ [0, 2] m/s and |w| ≤ 2 rad/s. We generate a
total of 1, 000 training environments and 100 validation en-
vironments. Generating the datasets takes roughly 35 minutes
on an NVIDIA 3090Ti GPU. The ground-truth value function
V (xr; e) and the corresponding LiDAR observation oe for a
validation environment are shown in Figure 3.

We generate a training batch by first sampling 10 training
environments. For each environment, we set the system origin
to 10 different states sampled outside of the obstacle set and
capture the corresponding LiDAR observation, resulting in 10
different egocentric observations. This is done to increase the
diversity of LiDAR observations seen during training without
substantially increasing the computational effort, which is
important because the observations are a high-dimensional
network input. For each sampled system origin, we query
the ground-truth value function and its spatial gradients at
500 random states that are not occluded by obstacles. This
ultimately results in N = 50, 000 samples per training batch.

3) OCR-VN Architecture and Training: We train an OCR-
VN to predict V (xr; e) from the reduced system state xr,
disturbance bound d̄er, and the LiDAR observation oe captured
at the system origin. Let us denote the value predicted by
the OCR-VN as Vψ(xr, d̄er, o

e), where ψ denotes the learn-
able weights of the neural network. We choose Vψ to be a
multilayer perceptron with 4 hidden layers of 512 neurons
each. We desire Vψ to accurately model the spatial gradients
of V as well, since they will be used in the safety filter
construction. Thus, we use sinusoidal activations, which have
been shown to lead to more effectively gradient modeling than
ReLU activations [85].
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Fig. 3: (Left) A LiDAR observation oe in a validation environ-
ment where d̄epx,py = 0.82 m/s, d̄epθ = 0.56 rad/s. (Right top-
row) The ground-truth value function and its spatial gradients.
(Right bottom-row) OCR-VN predictions using oe and d̄er. As
shown above, the OCR-VN predictions for the value function
and its spatial gradients are highly accurate.

For each training batch as described in Section V-A2, we
minimize the MSE training loss:

1

N

N∑
i=1

(||V iψ(xr, d̄er, oe)− V i(xr; e)||22+

||∇xV
i
ψ(xr, d̄

e
r, o

e)−∇xV
i(xr; e)||22) (11)

which includes a loss term for both the value and its spatial
gradients. We use the Adam optimizer with a learning rate of
10−5. Training converges in roughly 8 hours on an NVIDIA
3090Ti GPU. As shown in Figure 3, the OCR-VN can accu-
rately model the value function and its spatial gradients for a
validation environment using a single LiDAR observation oe.
Please see Appendix B for a study on the importance of the
sinusoidal activations and the spatial gradient loss term.

4) OCR-VN Calibration: The OCR-VN will inevitably con-
tain learning errors that can be critical for safety. To safeguard
against these errors, we calibrate the OCR-VN by shifting its
output by a probabilistic error bound δ computed on the valida-
tion dataset. We will refer to δ as the “calibration level” and the
shifted network output as the “calibrated output”. We employ
conformal prediction, a popular uncertainty quantification tool
in the machine learning literature, to compute δ up to a desired
confidence β and violation rate ϵ [86], [87].

Our procedure is as follows. Select a desired confidence
β ∈ (0, 1) and violation rate ϵ ∈ (0, 1). Sample N calibration
points according to a distribution P over the validation dataset
∆. Compute the conformal scores {si}Ni=1 as the prediction
errors si = V iψ

(
xr, d̄

e
r, o

e
)
−V i (xr; e). The following theorem

provides a probabilistic bound on the OCR-VN error:

Theorem 1 (Conformal OCR-VN Calibration). Compute the
number of “outliers” k as:

argmax
k

k :
k∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i ≤ β, (12)

where β, ϵ, and N are as defined above. Compute the
calibration level δ as the N−k

N quantile of the conformal scores
{si}Ni=1. Then, with probability at least 1− β over the draws
of the calibration samples, the following holds:

P
(xr,e,d̄er,o

e)∈∆

(
Vψ(xr, d̄

e
r, o

e)− V (xr; e) > δ
)
≤ ϵ (13)

TABLE II: Calibration Levels for the OCR-VN
with N = 107, β = 10−12

Violation Rate ϵ 10−1 10−2 10−3

Calibration Level δ (m) 0.22 0.49 0.99

The proof of Theorem 1 is presented in Appendix A.
Ignoring the confidence parameter β for a moment, Inequality
(13) tells us that the volume of the validation dataset for which
the OCR-VN overestimates the safety value by more than δ is
bounded by the violation parameter ϵ. This enables us to be
sure, up to a desired ϵ, that the true safety value is at least as
large as that predicted by the OCR-VN, once adjusted by δ.
However, this holds only for the distribution from which the
calibration samples are drawn, which can lead to safety issues
in practice. Care should be taken to use a validation dataset
that will reflect the expected deployment settings. Although
we do not explore it in this work, we suggest future work
can improve the robustness of this calibration step using, e.g.,
out-of-distribution detection methods during deployment.

To interpret the confidence parameter β, note that the
calibration level δ is a random variable that depends on the
randomly sampled calibration set. It might be the case that we
happen to draw an unrepresentative calibration set, in which
case the ϵ bound does not hold. β controls the probability
of this adverse event, which regards the correctness of the
probabilistic guarantee given by Inequality (13). Fortunately, β
goes to 0 exponentially with N , so β can be chosen sufficiently
small, such as 10−12, when we sample large N . 1−β will then
be so close to 1 that it does not have any practical importance.

We set N = 107, β = 10−12 and compute δ corresponding
to various ϵ in Table II. We select δ = 0.49 m associated with
ϵ = 10−2 as a comfortable trade-off between conservatism
and performance for the tasks in this work.

B. Deployment Phase of the OCR Framework

In this section, we describe the steps involved in deploy-
ing the OCR framework onto a quadruped robot. During
deployment, the quadruped periodically receives a LiDAR
observation oe from an onboard sensor as a function of
the environment e. Using a LiDAR-based state localization
algorithm, the quadruped maintains an estimate of its reduced
state xr in the relative frame defined by oe. The quadruped
then estimates the disturbance bound d̄er as a function of the
most recent state and action history

(
xi−k:ir , ωi−k:i−1

)
using

an online disturbance bound estimation scheme. It queries the
OCR-VN with the input

(
xr, d̄

e
r, o

e
)

to construct an adaptive
safety filter. We describe the details of the online disturbance
bound estimation scheme and the adaptive safety filter next.

1) Online Disturbance Bound Estimation: We propose to
estimate the disturbance bound d̄er using the most recent state
and action history, to enable rapid adaptation to dynamical
uncertainty. Let xi−k:ir and ωi−k:i−1 denote a discrete history
of estimated states and twist commands ending at time τ .
To efficiently roll out the state trajectory in discrete time for
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online computation, we use Euler’s method. Since disturbance
is additive in fr(xr, ω, der) in Equation (10), we have:

xir ≈ xi−kr +
i−1∑
j=i−k

η · (fr(xjr, ωj) + (der)
j
)

≈ xi−kr +
i−1∑
j=i−k

η · fr(xjr, ωj) + η
i−1∑
j=i−k

(der)
j
,

where η is the discrete time step. To ensure that we capture
systemic disturbances in the dynamics and ignore transient
noise in the state estimation, we assume that the disturbance
input takes the form of a low-frequency signal and remains a
constant dτr throughout the short history:

xir ≈ xi−kr +
i−1∑
j=i−k

η · fr(xjr, ωj) + η · k · dτr .

Thus, we estimate the disturbance dτr as:

dτr ≈ xir − x̂ir
η · k

, (14)

where x̂ir := xi−kr +
∑i−1
j=i−k η·fr(xjr, ωj) is the state predicted

by disturbance-free dynamics. Intuitively, dτr is the error in the
state prediction normalized by the prediction time horizon η·k.
We set η · k = 2 s in practice.

By computing dτr over the most recent φ discrete time steps
ending at the current time t, i.e., for τ = t − j · η, ∀j ∈
{0, 1, ..., φ− 1}, we construct a sliding window of estimated
disturbances d1:φr . To ensure good coverage of the estimated
disturbances, we compute the disturbance bound d̄er as:

d̄er = |µ(
(
d1:φr

)
c
)| ± b · σ(

(
d1:φr

)
c
), (15)

where the coverage parameter c ∈ [0, 1] determines the middle
fraction of the sorted window of disturbances d1:φr to be
considered. This makes sure that the safety value function does
not become overly conservative due to outlier disturbances.
µ(·) is the sample mean, and σ(·) is the sample standard
deviation. b ≥ 0 is the spread of disturbances, in standard
deviation units, that we compute the disturbance bound for,
modulating the degree of robustness of the disturbance bound.
A larger choice of b results in a more robust disturbance bound.
We set c = 0.8, b = 2, and η · φ = 2 s in practice. We
compute two separate disturbance bounds: d̄epx,py bounding
the uncertainty in the position dynamics and d̄epθ bounding
the uncertainty in the yaw dynamics. For computing a bound
on the norm of depx,py , we use Equation (15) on a window of
disturbance norms instead of raw values.

Remark. Although we adopt a simple sliding window-based
estimator for its simplicity, rapid adaptability, and computa-
tional efficiency, the OCR framework is agnostic to this choice.
More advanced estimation approaches, such as Kalman filters
or Gaussian Process regression, could be used depending
on the desired balance between accuracy, efficiency, and
generalization capabilities [24], [88]. See Appendix C-A for
a comparison with an extended Kalman filter-based estimator.

2) Adaptive Safety Filter: We use the OCR-VN to construct
a smooth least-restrictive safety filter (see Section IV-B) safe-
guarding a potentially unsafe nominal controller that is given
to us. Specifically, we compute a filtered high-level policy πhigh

safe
which, when combined with the underlying low-level policy
πlow

nom, maintains the overall system safety.
We compute the hierarchical filtered policy πsafe(x, d̄

e
r, o

e)
as follows:

πsafe(x, d̄
e
r, o

e) =

{
πnom(x), Vψ(xr, d̄

e
r, o

e) > δ

πlow
nom ◦ πhigh

QP (xr, d̄
e
r, o

e), Vψ(xr, d̄
e
r, o

e) ≤ δ,
(16)

where πhigh
QP (xr, d̄

e
r, o

e) is obtained by solving:

min
ω∈Ω,s≥0

(
||ω − πhigh

nom(xr)||22 + λs2
)

s.t. min
dr∈De

r

∇Vψ(xr, d̄er, oe) · fr(xr, ω, dr) ≥ −s
(17)

where the slack variable s ensures that there always exists a
feasible solution, and λ (set to 103) is the relative weight of
s in the objective. De

r is the set of disturbances respecting the
disturbance bound d̄er. Intuitively, (17) minimally adjusts the
nominal policy so that the resulting twist commands ensure
system safety in the deployment environment. Note that the
OCR-VN is differentiable everywhere, and its gradients can
be computed efficiently via automatic differentiation. Further-
more, the introduction of the slack variable ensures that the
QP problem in (17) is always feasible, especially when the
disturbance bounds are overly conservative. The disturbance
optimization in the constraint in (17) is independent of the
optimization of ω, since the disturbance enters additively
into fr in Equation (10). Since fr is affine in control and
disturbance, (17) is a quadratic program (QP) that we can solve
efficiently online, making the proposed framework amenable
for real-world robotic systems.

We remark that the design of the filter in (16) is grounded
in reachability theory. If Vψ perfectly models the underlying
value function and the system starts outside of the BRT, then
(16) is guaranteed to maintain safety [73].

Remark. When the quadruped is controlled by an end-to-
end nominal controller, we can use the OCR-VN framework
to maintain safety with a minor adjustment. While Vψ > 0,
we permit the nominal controller to execute unhindered. Oth-
erwise, we must provide our own high-level planner πhigh

nom (x)
for solving (17) and a low-level policy πlow

nom for execution.

VI. SIMULATION EXPERIMENTS

We test the proposed framework on a Unitree Go1
quadruped in Isaac Sim (this section) and on a hardware
testbed (Section VII) in a variety of unseen obstacle settings
and terrains, as well as on different nominal controllers. The
goal of our simulation studies and experiments is to answer
the following questions about the proposed framework:

1) Can the safety filter dynamically adapt to unknown
obstacles to maintain safety?

2) Can the safety filter adapt to system and environment un-
certainty (e.g., uneven terrains, slippery surfaces, etc.)?

3) Can the safety filter maintain safety under different
nominal policies?
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A. Nominal Controllers

We test our framework on several different hierarchical
nominal policies. A nominal policy is generated by selecting
one of the three high-level planners and one of the three low-
level locomotion policies described below. These policies are
selected to contain both RL-based policies as well as MPC-
based policies. We test all different combinations of high-level
and low-level policies, but present the results for only a few
of them here for brevity purposes.

Additionally, we include an end-to-end nominal policy from
ABS [29] (called ABS-Agile here on), as an illustration of how
our method can generalize to end-to-end nominal policies.
To implement our method on top of the end-to-end ABS-
Agile policy, we compute the safety twist commands using the
proposed filter framework in Equation (16) with the Predictive
Sampling-based (PS) high-level planner (see VI-A1a) and use
the ABS-Recovery policy (see VI-A2c) to track the filtered
twist commands. Whenever the system safety is not at risk,
we use the nominal ABS-Agile policy.

1) High-Level Planners:
a) Predictive Sampling-Based Planner (PS): PS is a

sampling-based high-level MPC planner that optimizes the
robot trajectory to reach the goal while avoiding obstacles. The
cost function for a discrete control sequence ω = {ωj}⌊T/η⌋j=1

evaluated at the reduced state xr is given by:

Jω(xr) =

⌊T/η⌋∑
j=1

(
||x̂jr − g||+ c · 1{x̂jr ∈ L̂e}

)
where T is the prediction horizon and η is the discrete time
step. x̂jr is the future state at time j · η predicted by the
reduced-order dynamics fr in Equation (10) after applying
ω to the system. g is the goal state, c is a collision penalty,
and L̂e is the estimated obstacle map computed online using
obtained LiDAR scans via tinySLAM [89]. Intuitively, the
cost function is minimized by control sequences that bring
the system to the goal fastest without collisions. To compute
the optimal high-level commands, PS samples N control
sequences ωi, ∀i = 1, ..., N from a Gaussian centered at ωseed
with standard deviation σ. The cost Jωi

(xr) for each sequence
is computed and finally the best control sequence ωbest is
selected which minimizes the cost. PS executes the first twist
command in ωbest and sets ωseed = ωbest for the next control
iteration. We set N = 1, 000, σ = 0.5, T = 4 s, η = 0.2 s,
c = 109, and the initial ωseed to the control range center.

b) Naive Planner (NVE): NVE performs basic goal-
seeking without obstacle avoidance. Let pθgoal be the angle to
the goal relative to the robot’s heading. NVE computes:

v =

{
vmax, |pθgoal | ≤ π

2

vmin, |pθgoal | > π
2 ,

w =

{
wmin ·min{|

pθgoal

pθmax
|, 1}, pθgoal ≤ 0

wmax ·min{|
pθgoal

pθmax
|, 1}, pθgoal > 0,

where pθmax
is the heading difference beyond which yaw rate

is maximized. We set pθmax = π
4 rad. Intuitively, NVE turns

greedily towards the goal and commands maximum/minimum
forward velocity when the goal is ahead/behind.

c) Human Teleoperation (HMN): a human teleoperator
provides the high-level twist commands.

2) Low-Level Policies:
a) Walk-These-Ways (WTW): an RL-based policy that

encodes a structured family of locomotion strategies to enable
diverse task generalization such as crouching, hopping, run-
ning, and others [21]. During training, the policy is rewarded
for accurate twist tracking and gait following. During deploy-
ment, different locomotion strategies can be used by changing
gait parameters. We use the gait parameters corresponding to
a 3 Hz trot for its stability and agility.

b) Legged Model Predictive Control (MPC) by Unitree:
a model-based policy provided by Unitree Robotics as a
ROS package for the Go1 quadruped robot [81]. The policy
tracks twist commands using an internal MPC-based algorithm
that computes motor torque controls. It is widely used by
consumers of the Go1 quadruped hardware.

c) ABS Recovery Policy: an RL-based policy used in the
ABS framework to track twist commands as fast as possible
in order to serve as a backup shielding policy [29]. During
training, the policy is rewarded for accurate twist tracking and
maintaining a stable posture. Similar to its role in the ABS
framework, we will use the ABS-Recovery policy as the low-
level backup shielding policy for the ABS-Agile policy.

B. Baseline and Ablations

We evaluate our framework against a range of nominal
controllers and the end-to-end safety framework, ABS, pro-
posed in [29]. ABS integrates an RL-based agile policy with
a safety-oriented recovery policy. A value function predictor
determines when to switch to the recovery policy, which then
generates safe twist commands to be executed by the recovery
policy. We refer the interested readers to [29] for more details.
Compared to ABS, the key innovations of this work include
the consideration of worst-case dynamical uncertainties in the
online setting for robust safety, as well as the computation of
a policy-agnostic optimal value function for automatic safety
filtering across different nominal controllers.

We also evaluate the OCR framework without the distur-
bance estimation module (OCR \ DE) and calibration step
(OCR \ C), as well as if the safety filter is not used at all (No
Filter) to understand the importance of each of these modules.

Finally, we include comparisons with a robust CBF-based
baseline, a high-level MPC-based baseline, and a low-level
MPC-based baseline in Appendices C-B, C-C, and C-D to
illustrate the difficulty of the safety problem for existing
traditional methods.

C. Metrics

Each experiment trial ends in either a success, a collision,
or a timeout after 60 s. Across successful runs, we report
the average velocity v̄ of the quadruped along the trajectory,
the average rate of safety filter activation r̄, and the average
minimum distance to the obstacle set q̄.
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TABLE III: Simulation Results for OCR, Ablations, and ABS across Nominal Controllers (100 Trials)

Controller Filter Success Rate ↑ Collision Rate ↓ Timeout Rate ↓ v̄ (m/s) ↑ r̄ ↓ q̄ (m) ↑

ABS-Agile

No Filter 0.75 0.25 0.00 2.10 0.00 0.41
ABS 0.80 0.20 0.00 2.03 0.03 0.41
OCR \ DE 0.40 0.35 0.25 0.98 0.62 0.41
OCR \ C 0.81 0.19 0.00 1.70 0.28 0.41
OCR (ours) 0.91 0.09 0.00 1.22 0.59 0.58

PS + WTW

No Filter 0.72 0.28 0.00 1.36 0.00 0.43
OCR \ DE 0.78 0.22 0.00 0.84 0.61 0.42
OCR \ C 0.90 0.09 0.01 1.21 0.18 0.44
OCR (ours) 1.00 0.00 0.00 0.97 0.42 0.66

NVE + WTW

No Filter 0.20 0.80 0.00 1.70 0.00 0.31
OCR \ DE 0.21 0.79 0.00 0.93 0.61 0.37
OCR \ C 0.45 0.55 0.00 1.32 0.28 0.39
OCR (ours) 0.91 0.08 0.01 1.04 0.47 0.62

D. Simulation Setups

We test our framework as well as baselines on randomly
generated environments. Each environment contains 4 circular
obstacles, where each obstacle is spawned at some location
drawn uniformly randomly from [−2, 2] m × [−2, 2] m.
Each obstacle has a radius drawn uniformly randomly from
[0.1, 1] m. Each environment also draws an additional payload
uniformly randomly from [−1,−0.5]∪[0.5, 1] kg and a ground
friction coefficient [0.5, 0.75]∪ [1.25, 1.5] for dynamical varia-
tion. We remark that these payloads and frictions are contained
within the range used to train the nominal policies and
baselines so that the comparison is fair, but they represent
the outer limits to effectively test robustness. The quadruped
must navigate from (−5, 0) m to (5, 0) m without colliding
(see Figure 4).

Additionally, we present hand-designed environments that
stress-test and highlight the abilities of our framework.

E. Simulation Results

Recall that the goal of our simulation studies and experi-
ments is to answer the following questions: can the safety filter
adapt to unknown obstacles in the environment, uncertainty in
the system and environment, and different nominal policies?

1) Safeguarding Different Nominal Controllers: We first
evaluate the efficacy of the OCR framework and its ablations
for safeguarding various nominal controllers in different obsta-
cle settings. Numerical results are listed in Table III. The OCR
framework achieves high success rates, low collision rates, and
comfortable distances to the obstacle set across all nominal
controllers, highlighting its ability to automatically safeguard
different nominal controllers in different environments without

a priori knowledge. Its success rates are consistently high
regardless of whether the underlying nominal control has built-
in obstacle avoidance (ABS-Agile and PS + WTW) or not
(NVE + WTW). Figure 4 illustrates the robot trajectories under
the OCR framework and the framework’s ability to ensure
safety when the nominal controller would cause collision.

The results in Table III also clearly show the importance
of the disturbance estimation module and the calibration step
for enabling the OCR framework to be robust to modeling
and learning errors, respectively. Interestingly, even though the
ABS framework is particularly designed to safeguard the ABS-
Agile policy, our method also outperforms the ABS framework
on ABS-Agile. A key reason for this is the robustness of the
proposed framework not only to environment uncertainty (i.e.,
unknown obstacles) but also to dynamics uncertainty, as we
discuss next.

2) Robustness to Dynamical Uncertainty: Results in Table
III demonstrate the ability of the OCR framework to handle
variation in the system dynamics. Recall that each environment
has its own payload and friction parameters, which signif-
icantly influence the dynamics of the system. Additionally,
different low-level policies have different abilities to track
velocity and yaw rate commands. Despite these challenges,
the OCR framework consistently achieves a high success rate
without a priori access to the underlying nominal policy or
simulation environments.

To study robustness more thoroughly, we plot safety rates
across environment settings for different frameworks using
the ABS-Agile policy as the nominal policy in Figure 5. The
OCR framework achieves high safety rates across all settings,
surpassing the ABS baseline particularly in low-friction envi-

Fig. 4: The OCR framework (green/red : nominal/filtered) safeguards different nominal controllers navigating to a goal (cyan)
in an environment with a payload of −0.6 kg and a friction of 0.7. By themselves (white), the (a) PS + WTW, (b) NVE +
WTW, and (c) ABS-Agile controllers fail to maintain safety due to dynamical uncertainty caused by low payload and friction.
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Fig. 5: (In color) Safety rates across settings (1,000 trials).

ronments, but only when using disturbance estimation. This
leads us to conclude that disturbance estimation plays a key
role in the robustness of the proposed framework. For all
numerical results, see Appendix C.

Figure 6 (a) visualizes the behavior of the OCR and ABS
frameworks in an environment with high perturbations in dy-
namics (a payload of −0.9 kg and a friction of 0.5). The OCR
framework estimates large disturbances online and accordingly
intervenes to steer the system away from collision. The
adaptation facilitated by the disturbance estimation module is
visualized in Figure 6 (b) in a hand-designed environment
with a sudden friction change in the blue region. Corre-
spondingly, the proposed framework automatically estimates
larger disturbance bounds in this region of low friction (the
purple point), which subsequently, leads to a more aggressive
safety filter to ensure system safety. The ABS framework, in
contrast, intervenes later and allows the quadruped to approach
dangerously close to the wall obstacle, eventually leading
to collision. For videos illustrating the framework in action,
including the evolution of estimated disturbance bounds, the
value function predictions, and the safety filter, please see the
project website.1

3) Safety-Performance Tradeoff: Although the results in
Table III indicate that the OCR framework achieves superior
success rates and collision rates, they also suggest that this
comes at a tradeoff with performance, as shown by the
decrease in average forward velocity v̄ after OCR-VN cali-
bration. To investigate the quality of this safety-performance
tradeoff, we collect results across various safety margins for
both the OCR framework and the ABS baseline. The results
are listed in Table IV.

Without calibration, the OCR framework (OCR \ C)
achieves roughly the same agility and success rate as the
ABS baseline (ABS w/ Threshold -0.05). As the safety margin
increases (by decreasing the threshold at which ABS triggers
and decreasing the calibration level of the OCR-VN), both
frameworks experience a comparable decrease in the agility
of the system. However, in contrast to the ABS framework,
the OCR framework provides substantially better success rates
and collision rates as the conservatism increases. This is due
to the difference in optimality of the learned value functions
between the two frameworks, as discussed further in the next
subsection. Additionally, the speeds achieved remain in the
agile 1 to 2 m/s range across safety margins. Based on these
results, we conclude that the OCR framework achieves a
reasonable safety-performance tradeoff.

1https://sia-lab-git.github.io/One Filter to Deploy Them All

4) Further Comparisons with ABS: We now further com-
pare the proposed OCR framework with ABS, as it leverages a
similar safety filtering framework. One of the key advantages
of the OCR framework is that it grants the user the freedom
to choose the most appropriate nominal controller for the
task at hand without needing to recompute safety assurances,
whereas the ABS framework is specific to a particular nominal
policy. We demonstrate this utility in Figure 7 (a), where the
robot must navigate two sharp turns. The OCR framework
successfully completes the task using the PS + WTW nominal
controller. On the other, the ABS baseline gets stuck, because
the learning-based ABS-Agile policy is not suited for the
required navigation style.

The policy-independence of the OCR framework is a con-
sequence of the optimality of the underlying value function
synthesized during the training phase described in Section
V-A. We demonstrate the advantages of using the optimal
value function in Figure 7 (b) in a hand-designed “dead-end”
environment. Since the setting is highly cluttered, we use OCR
\ C to reduce conservatism. We remark that this remains a fair
evaluation with respect to the ABS baseline because OCR \
C retains a comparable safety rate to ABS in Table III.

Using a control search guided by a policy-conditioned
value function, the ABS baseline suffers from unnecessary
interventions and suboptimality related to the quality of the
ABS-Agile policy. On the other hand, OCR framework reasons
about the optimal safety behavior (regardless of the nominal
policy), reducing unnecessary interventions and permitting
task progress.

VII. HARDWARE EXPERIMENTS

We deploy the OCR framework with nominal controllers
from Section VI-A on a Unitree Go1 quadruped robot
equipped with an onboard Slamtec RPLiDAR A2 sensor. The
quadruped maintains an estimate of its state in the global frame
via tinySLAM [89], a LiDAR-based simultaneous localiza-
tion and mapping (SLAM) algorithm, which is subsequently
used for disturbance bound estimation.

A. Hardware Setups

We first quantitatively and qualitatively compare the pro-
posed framework and all baselines in two different experiment
settings. In the first setting, the robot needs to navigate through
an obstacle maze consisting of walls and circular obstacles.
The second setting is the same as the first, except that a
rectangular region directly preceding the first obstacle has a
very low friction due to an oil-soaked tarp, to test the dynamic
safety adaptivity of different methods. The setups are shown
in Figure 8. In our experiments, we also include results on a
few additional nominal policies to stress-test our system.

Additionally, we qualitatively test our framework in a di-
verse set of real-world experiments, including cluttered envi-
ronments, rough terrains, external disturbances, and adversar-
ial human teleoperation, with videos on the project website. 1

https://sia-lab-git.github.io/One_Filter_to_Deploy_Them_All
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Fig. 6: OCR (green/red : nominal/filtered) and ABS (white/black : nominal/filtered) frameworks in (a) a validation environment
with a payload of −0.9 kg and a friction of 0.5 and (b) a hand-designed obstacle configuration with a region of low friction
(blue). In (b), we plot the evolution of the estimated disturbance bound in position d̄epx,py , as well as the OCR-VN predictions
at two different states (orange, purple).

Fig. 7: OCR (green/red : nominal/filtered) and ABS (white/black : nominal/filtered) frameworks in environments with hand-
designed obstacle configurations. In (b), the OCR framework is used without calibration due to the highly cluttered setting.

TABLE IV: Safety-Performance Tradeoff for OCR and ABS across Different Safety Margins (100 Trials)

Filter Success Rate Collision Rate Timeout Rate v̄ (m/s) r̄ q̄ (m)

ABS w/ Threshold -0.05 0.80 0.20 0.00 2.03 0.03 0.41
ABS w/ Threshold -0.10 0.78 0.22 0.00 2.00 0.03 0.41
ABS w/ Threshold -0.20 0.83 0.17 0.00 1.94 0.05 0.41
ABS w/ Threshold -0.40 0.77 0.17 0.06 1.85 0.08 0.42
ABS w/ Threshold -0.60 0.67 0.25 0.08 1.47 0.19 0.44

OCR \ C 0.81 0.19 0.00 1.70 0.28 0.41
OCR w/ C −0.1 0.79 0.21 0.00 1.72 0.24 0.41
OCR w/ C −0.2 0.78 0.22 0.00 1.42 0.32 0.42
OCR w/ C −0.3 0.86 0.14 0.00 1.30 0.40 0.43
OCR w/ C −0.4 0.90 0.10 0.00 1.14 0.47 0.46
OCR w/ C −0.5 (ours) 0.91 0.09 0.00 1.22 0.59 0.58

B. Hardware Results

The hardware results listed in Table V reaffirm the findings
in simulation. Namely, the OCR framework is effective at
safeguarding a diverse set of controllers. The framework also
displays a significant robustness to changes in the system
dynamics, as evidenced by the high success rates even in the
slippery condition, where the ABS baseline fails. Figure 8 il-
lustrates the difference between the OCR and ABS frameworks
in the slippery condition. Whereas the ABS baseline intervenes
too late to maintain safety, the OCR framework slows down
the robot and turns in time to avoid collision.

We further demonstrate the capabilities of the framework in
a variety of real-world scenarios. Videos of these demonstra-
tions can be found on the project website. 1 Many of these

scenarios are illustrated in Figure 1.

1) Safeguarding Different Nominal Controllers: Figure 1
illustrates the ability of the OCR framework to automati-
cally safeguard a variety of high-level planners, including (a)
learning-based, (c, f, k) model-based, (b, d, g, h, i, j) human
teleoperated, and (e) blind planners, on top of different low-
level locomotion policies, including (a, f, i, j, k) learning-based
and (b, c, d, e, g, h) model-based policies.

2) External Disturbances: Subplot (f) in Figure 1 demon-
strates the framework’s ability to preserve safety even under
forceful disturbances. After receiving a kick while on a slip-
pery floor, the framework guides the robot to turn sharply from
the obstacle and move away to maintain safety.
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TABLE V: Hardware Results for OCR and ABS across Nominal Controllers (10 Trials)

Normal Condition Slippery Condition
Controller Filter # Successes ↑ # Collisions ↓ # Timeouts ↓ # Successes ↑ # Collisions ↓ # Timeouts ↓

ABS-Agile
No Filter 9 1 0 1 9 0
ABS 9 1 0 2 8 0
OCR (ours) 10 0 0 8 1 1

PS + WTW No Filter 5 5 0 1 9 0
OCR (ours) 9 1 0 8 2 0

NVE + WTW No Filter 0 10 0 0 10 0
OCR (ours) 9 0 1 8 2 0

PS + MPC No Filter 5 5 0 0 10 0
OCR (ours) 10 0 0 9 1 0

NVE + MPC No Filter 0 10 0 0 10 0
OCR (ours) 9 0 1 7 3 0

Fig. 8: Hardware experiments with a slippery region outlined in white. (Left) The ABS baseline collides due to drifting caused
by the slippery floor. (Right) The OCR framework (green/red : nominal/filtered) stops and turns in time to prevent a collision,
demonstrating superior robustness to changes in the system dynamics.

3) Adversarial Human Teleoperation: In subplot (h) of
Figure 1, an adversarial human teleoperator attempts to collide
the robot into a pillar multiple times. The filter activates only
when necessary and causes the robot to veer to avoid collision
while respecting the commanded input as much as possible.

4) Dynamic Obstacles: The framework’s ability to react to
dynamic obstacles in real time is illustrated in subplots (e, k)
in Figure 1. The robot slows down from a velocity of roughly
2 m/s to provide enough turn radius to avoid the box placed
suddenly by a human in front of the robot in subplot (e).

5) Cluttered Indoor Environments: The robot navigates
narrow corridors in subplots (a, b, c) in Figure 1. Due to
the conservatism of the OCR framework, a few adjustments
are needed for good performance in highly cluttered settings.
First, we discard LiDAR readings outside of a front-facing
cone spanning π/2 rad. We believe this is necessary because
of a shift in distribution of LiDAR readings from what is
seen during training, which has sparse obstacles and no walls.
Second, we use the uncalibrated output of the OCR-VN. We
theorize that the conservatism of the OCR framework is an
inherent result of using a worst-case analysis for disturbance,
which makes the safety problem especially difficult in crowded
settings. We defer addressing these limitations to future work.

6) Rough Terrain: The robot avoids collisions on rough
outdoor terrains in subplots (d, i, j) of Figure 1, further
highlighting the ability of the proposed framework to adapt
to dynamical uncertainties.

VIII. LIMITATIONS

Although our proposed framework achieves high safety rates
in both simulation and hardware results in Tables III and V, the
framework still exhibits a nonzero collision rate. We attribute
this to several failure modes of the framework that we identify
and discuss next.

First, during deployment, the system may experience dis-
turbances that exceed the estimated disturbance bounds which
the framework is designed to safeguard against. Furthermore,
there is an unavoidable delay before environment changes will
reflect in the estimated disturbance bounds. During this delay
period, the system can encounter failure before the framework
has a chance to adapt.

Second, the OCR-VN can contain learning errors that are
critical to safety. While the calibration scheme presented in
Section V-A4 can help us better understand the degree of
these errors, we cannot directly extrapolate the theoretical
guarantees from a validation dataset to the real world, due
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to potential distribution shifts. In particular, the calibration
may not be valid in settings different than the distribution
of LiDAR scans seen during training, e.g., when the robot
is fully surrounded by obstacles. Additionally, the use of only
circular obstacles during training can inhibit the generalization
abilities of the OCR-VN to settings with irregular geometries,
especially if the observation space is higher-dimensional, e.g.,
occupancy grids or camera images. It would be interesting to
explore more expressive scenario generation methods, online
calibration methods and out-of-distribution detection methods
to overcome these challenges.

In addition to these failure modes which affect safety, there
are several limitations of the framework that affect its perfor-
mance. For some low-level locomotion policies and environ-
ment settings, the error in the reduced-order dynamics model
can be very large, leading to high dynamical uncertainty. Large
estimated disturbances can also appear as an artifact of latency
and state estimation issues with real-world hardware. The
resulting disturbance bounds can produce overly conservative
BRTs which severely inhibit progress by the system. In highly
cluttered environments, this can manifest as stalling behavior.

The conservatism of the framework is also partly a conse-
quence of our choice to model the dynamics uncertainty as
adversarial in nature. Future works can explore approaches to
overcome these issues by using proactive methods of modeling
and estimating dynamics and disturbances, for example by
using observations of the environment or learning controller-
specific dynamics to anticipate future system behavior and
reduce uncertainty, as well as considering different charac-
terizations of disturbances.

Finally, while our proposed framework can, in principle,
accommodate a wide range of reduced-order models and un-
certainty characterizations, the specific implementation and ex-
periments in this work are based on the use of a simplified 3D
Dubins car model. This choice is motivated by the particular
application scenario considered. As such, the presented results
do not capture the full richness of quadrupedal locomotion
dynamics, including contact transitions, body compliance, or
high-dimensional control, which may be required for more
challenging tasks. A key challenge in extending the framework
to more complex models lies in the computational burden
of HJ reachability analysis, which does not scale well with
the dimensionality of the state space. However, recent ad-
vances, such as decomposition methods [90] and learning-
based approximations [85], [91] offer promising directions for
integrating more expressive models in the future.

IX. CONCLUSION

We propose the OCR framework, which uses an adaptive
safety filter to robustly ensure the safety of a quadruped robot
running an a priori unknown locomotion policy in a priori
unknown environments using only LiDAR observations. The
offline training of the OCR-VN is done without a priori access
to the controllers or a simulator - hence, “One Filter to Deploy
Them All”. In simulation and hardware experiments on a
Unitree Go1 quadruped, we demonstrate the superior efficacy
of the proposed approach to ensure, in zero-shot fashion,

the safety of numerous controllers across diverse environment
configurations and perturbed dynamics. Videos demonstrating
the efficacy of the proposed approach across various settings
can be found on the project website. 1

ACKNOWLEDGMENTS

This work is supported in part by a NASA Space Technol-
ogy Graduate Research Opportunity, the NSF CAREER Pro-
gram under award 2240163, and the DARPA ANSR program.

REFERENCES

[1] S. Halder, K. Afsari, E. Chiou, R. Patrick, and K. A. Hamed,
“Construction inspection and monitoring with quadruped robots
in future human-robot teaming: A preliminary study,” Journal of
Building Engineering, vol. 65, p. 105814, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352710222018204

[2] C. Gehring, P. Fankhauser, L. Isler, R. Diethelm, S. Bachmann,
M. Potz, L. Gerstenberg, and M. Hutter, “Anymal in the field: Solving
industrial inspection of an offshore hvdc platform with a quadrupedal
robot,” in Field and Service Robotics, G. Ishigami and K. Yoshida,
Eds. Singapore: Springer Singapore, 2021, pp. 247–260.

[3] N. Li, J. Cao, and Y. Huang, “Fabrication and testing of the rescue
quadruped robot for post-disaster search and rescue operations,” in
2023 IEEE 3rd International Conference on Electronic Technology,
Communication and Information (ICETCI). IEEE, 2023, pp. 723–
729.

[4] C. Cruz Ulloa, J. del Cerro, and A. Barrientos, “Mixed-reality for
quadruped-robotic guidance in sar tasks,” Journal of Computational
Design and Engineering, vol. 10, no. 4, pp. 1479–1489, 2023.

[5] F. Gao, C. Lei, X. Long, J. Wang, and P. Song, “Design and devel-
opment of an intelligent pet-type quadruped robot,” in 2021 IEEE 4th
International Conference on Multimedia Information Processing and
Retrieval (MIPR). IEEE, 2021, pp. 366–371.

[6] H. Lee, “A human-robot interaction entertainment pet robot,” Journal
of the Korean Institute of Intelligent Systems, vol. 24, no. 2, pp. 179–
185, 2014.

[7] Z. Chen, T. Fan, X. Zhao, J. Liang, C. Shen, H. Chen, D. Manocha,
J. Pan, and W. Zhang, “Autonomous social distancing in urban environ-
ments using a quadruped robot,” IEEE Access, vol. 9, pp. 8392–8403,
2021.

[8] A. D. Ames, P. Tabuada, A. Jones, W.-L. Ma, M. Rungger,
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APPENDIX A
PROOF OF THEOREM 1

Proof. Theorem 1 is a straightforward application of the
split conformal prediction method detailed in [86], where we
set their “input x” as our network input (xr, d̄

e
r, o

e), their
“output y” as our true value V (xr; e), their “score function
s(x, y)” as our prediction error Vψ(xr, d̄er, o

e)−V (xr; e), their
“calibration size n” as our calibration size N , their “error
rate α” in terms of our number of outliers k as k+1

N+1 , and
their “quantile q̂” as our calibration level δ. Indeed, recall that
we compute δ as the N−k

N = N−(α(N+1)−1)
N = (N+1)(1−α)

N
quantile of the calibration scores {si}Ni=1, which is precisely
how q̂ is computed in [86]. Section 3.2 in [86] yields:

P
(xr,d̄er,o

e)

(
Vψ(xr, d̄

e
r, o

e)− V (xr; e) ≤ δ
)
∼ B(N−k, k+1),

(18)
where B is the Beta distribution. Line (18) tells us that the
probability that the OCR-VN overestimates the true value by at
most δ follows a Beta distribution that depends on the number
of calibration points N and outliers k used to determine δ. We
are interested in lower bounding this probability by 1−ϵ with a
confidence of at least 1−β. Fortunately, since the relationship
on Line (18) is known to us, we can compute the k needed to
satisfy a desired ϵ and β. The cumulative distribution function
of the Beta distribution on Line (18) evaluated at x is given
in terms of k by the incomplete beta function ratio Ix(N −
k, k+1) =

∑N
j=N−k

(
N
j

)
xj(1−x)N−j from DLMF, (8.17.5)

[92]. Changing the index i = N−j yields Ix(N−k, k+1) =∑k
i=0

(
N
N−i

)
xN−i(1−x)N−(N−i) =

∑k
i=0

(
N
i

)
xN−i(1−x)i.

Thus, Line (18) is equivalent to the claim that for any violation
parameter ϵ ∈ (0, 1) and confidence parameter β ∈ (0, 1),

P
(xr,d̄er,o

e)

(
Vψ(xr, d̄

e
r, o

e)− V (xr; e) ≤ δ
)
≥ 1− ϵ holds with

probability at least 1 − β over the draws of the samples as
long as β ≥ I1−ϵ(N − k, k + 1) =

∑k
i=0

(
N
i

)
ϵi(1 − ϵ)N−i.

This is the same requirement on k as presented in Theorem 1.

APPENDIX B
COMPARISON STUDY OF DIFFERENT NN ACTIVATIONS

AND TRAINING LOSSES

Our decision to use sinusoidal activations is motivated by
prior work, particularly DeepReach [85], which demonstrates
that ReLU-based networks are insufficient for accurately cap-
turing the gradients of value functions. In our context, where
precise gradient information is essential for constructing safety
filters, this capability is crucial. To address this, we include a
gradient term in the training loss, as defined by Equation 11.
To investigate the necessity of the sinusoidal activation and
the gradient loss term, we evaluate neural networks that use
either sinusoidal or ReLU activations, training each with and
without the gradient loss term.

After training converges, the networks with ReLU activa-
tions achieve validation losses that are approximately twice
as large for both value and gradient predictions. Furthermore,
visual inspection of predictions by each model in Figure 9
reveals that while the value prediction is degraded, the gradient
prediction is particularly poor. The gradient predictions by the
ReLU-based networks exhibit a mosaic-like appearance, an ar-
tifact of the piecewise-constant nature of the ReLU derivative.
These results justify our choice of sinusoidal activations.

Omitting the gradient loss term in the training of the sinu-
soidal network results in only a modest reduction in gradient
prediction accuracy. However, since gradients are critical for
the safety filter, and automatic differentiation enables their
computation with negligible overhead, we argue in favor
of retaining the gradient learning term. Moreover, in more
complex settings where the gradient could be more difficult to
model, the added supervision could offer greater benefits.

Fig. 9: Predictions by different models in a validation envi-
ronment (same environment as in Figure 3).

https://doi.org/10.1007/s10107-004-0559-y
https://www.sciencedirect.com/science/article/pii/S0967066123002459
https://www.sciencedirect.com/science/article/pii/S0967066123002459
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APPENDIX C
ADDITIONAL EXPERIMENT RESULTS

Simulation experiments are conducted in easy, medium,
and hard conditions to determine the effect of dynamical
uncertainty on framework efficacy. The experiment difficulty
determines the range of possible payload and friction param-
eters, as listed in Table VI. As the difficulty increases, the
parameter ranges stray further from normal conditions. We
report results for the hard condition in Section VI in the main
text. All simulation results can be found in Table VII.

All hardware results can be found in Table VIII.

A. Comparisons with an Extended Kalman Filter-based Ap-
proach for Online Disturbance Estimation

In this work, we use a sliding window-based approach as
described in Section V-B1. However, the proposed framework
is in principle agnostic to the specific estimation methodology.
In this section, we provide a comparison against an extended
Kalman filter (EKF)-based disturbance estimator, which is
chosen due to the real-world popularity of EKFs for state
estimation under sensor noise and dynamical uncertainty [93].
To employ an EKF for online disturbance estimation, we
assume a stochastic discrete-time system model with the
deterministic components given by:

p(k+1)
x = p(k)x +∆t(v(k) cos p

(k)
θ + d(k)px ),

p(k+1)
y = p(k)y +∆t(v(k) sin p

(k)
θ + d(k)py ),

p
(k+1)
θ = p

(k)
θ +∆t(w(k) + d(k)pθ

),

d(k+1)
px = γ · d(k)px ,

d(k+1)
py = γ · d(k)py ,

d(k+1)
pθ

= γ · d(k)pθ
,

where the decay parameter γ ∈ (0, 1) modulates the rate
at which external disturbances are assumed to decay to 0
over time, in the absence of the stochastic dynamics. We set
γ = 0.9. We model the stochastic component of the dynamics
as a white, Gaussian, independent random process with zero
mean and the covariance matrix Q = diagonal(1× 10−4, 1×
10−4, 1× 10−5, 8× 10−3, 8× 10−3, 8× 10−4). We model the
sensor noise as a white, Gaussian, independent random process
with zero mean and the covariance matrix R = diagonal(1×
10−3, 1 × 10−3, 1 × 10−3). We initialize the state estimate
covariance matrix P = diagonal(0.5, 0.5, 0.1, 0.5, 0.5, 0.1).
During deployment, the EKF uses the system history to update
its estimate of P . Thus, we compute an estimated bound on
the disturbances di by taking an interval around its estimate
with a width of z ·

√
Pii, where z can be interpreted as the

width in standard deviations. We set z = 2.
First, we evaluate the OCR framework with the EKF-based

estimator over 100 trials in simulation in the hard condition,
with the PS + WTW nominal controller. The results are listed
in Table VII (OCR w/ EKF). We observe a slight decrease
in both safety and performance of the framework versus using
the sliding window-based approach. We further investigate the
EKF-based estimator in the hand-defined environment involv-
ing a sudden change in ground friction, as illustrated in Figure

10. The profile of estimated disturbance bounds are similar to
those obtained by the sliding window-based approach, includ-
ing the noticeable increase in the estimated bounds when the
quadruped enters the slippery region. The lack of improvement
obtained by using the EKF-based estimator justifies our use of
the sliding window-based approach, especially since the EKF-
based estimator imposes additional assumptions on the system
dynamics and requires careful hand-tuning of the covariance
matrices for process and measurement noises.

Fig. 10: OCR (green/red : nominal/filtered) and OCR w/
EKF (white/gray : nominal/filtered) frameworks in the same
environment from Figure 6 (b). There is a sudden drop in
ground friction, indicated in blue. The disturbance bounds
estimated by the sliding window-based approach (black) and
the EKF-based approach (blue) are plotted in the bottom row.

B. Comparisons with a Robust CBF-based Baseline

We compare our method against a robust control barrier
function (CBF)-based baseline, which employs the CBF-QP
[94]. There are several key design challenges with using
CBF methods in our setting, including how to synthesize
an appropriate CBF h(x) from raw LiDAR scans. Following
common practice in the literature [95], we use the signed
distance function (SDF) to the obstacles, which we allow the
baseline to know beforehand as an informational advantage
against our proposed method for the purpose of comparison.
The robust CBF-QP considers the worst-case disturbances
within the bounds estimated online:

min
ω∈Ω,s≥0

(
||ω − πhigh

nom(xr)||22 + λs2
)

(19)

s.t. min
dr∈De

r

(ḣ(xr, w, dr) + γ · h(xr) + s) ≥ 0, (20)

where the coefficient γ determines how aggressively the con-
troller should maintain safety. We set γ = 0.5. We evaluate the
robust CBF-QP over 100 trials in simulation in the hard con-
dition, with the PS + WTW nominal controller. The results are
listed in Table VII (Robust CBF). Compared to our proposed
approach, the CBF-QP results in more conservative behaviors,
reaching velocities roughly half as large as our method, while
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also achieving a lower safety rate of 0.76. The conservatism of
the CBF controller is a consequence of the large suboptimality
of the SDF, in contrast to the optimal value function computed
by HJ reachability. The increase in safety violations by the
CBF controller results from infeasibility issues that arise due
to the control constraints. HJ reachability, on the other hand,
automatically reasons about control constraints. Based on these
results, we conclude that the proposed framework represents
a significant improvement in robustness over standard CBF
methods for the highly agile setting.

C. Comparisons with a High-level MPC-based Baseline

We compare our method with a high-level MPC controller
that computes twist commands using the simplified model
described in 10. The controller aims to solve the following
optimal control problem:

min
u(·)

Φ
(
x(tf )

)
+

∫ tf

t0

ℓ
(
x(t), u(t)

)
dt, (21)

s.t. ẋ(t) = f
(
x(t), u(t)

)
, (22)

x(t0) = x0, (23)

hi
(
x(t)

)
− ε ≥ 0,∀i ∈ {1, 2, .., n}. (24)

The terminal cost Φ
(
x(tf )

)
penalizes the final distance to the

goal:

Φ
(
x(tf )

)
= cΦ||x(tf )− xg||, (25)

where cΦ is the cost weight and xg is the goal state. The
stage cost ℓ

(
x(t), u(t)

)
penalizes the intermediate distance to

the goal as well as the control effort:

ℓ
(
x(t), u(t)

)
= cx||x(t)− xg||+ cu||u(t)||22, (26)

where cx, cu are cost weights. Each obstacle i in the environ-
ment imposes a collision-avoidance constraint hi

(
x(t)

)
− ε ≥

0, where hi
(
x(t)

)
is the signed distance from the body

collision sphere to the obstacle and ε is a robustness margin.
We set cΦ = 25, cx = 5, and cu = 10−12. Also, we fix
the MPC horizon to 4 s. We transform the continuous-time
optimal control problem into an NLP via direct shooting in
CasADi [96] and solve it online with IPOPT [97] using the
implementation provided by [98]. We use a time discretization
of 0.02 s and limit the number of IPOPT iterations to 100.

The MPC baseline is evaluated over 100 trials in simulation
in the hard condition using the WTW low-level policy. It
has access to the ground-truth obstacle information as an
informational advantage against our proposed approach. We
test two variants: a nominal variant where ε = 0 (HL-MPC +
WTW) and a robust variant where we adjust ε online based
on the disturbance bounds estimated via the methodology
described in Section V-B1 (RHL-MPC + WTW). The results
are listed in Table VII.

Relative to our proposed method, the nominal MPC baseline
exhibits a substantially lower success rate and a markedly
higher collision rate. This outcome aligns with expectations:
by neglecting safety-critical model mismatches introduced by
the low-level locomotion policy, the controller behaves overly
optimistically. This results in frequent collisions, particularly

along agile trajectories in low-friction settings. This effect is
underscored by the baseline’s extremely small average miss
distance of 0.03 m from obstacles.

The robust MPC baseline adjusts its safety margin according
to estimated disturbance bounds, which lowers the collision
rate from 0.51 to 0.44. Consistent with this, its average miss
distance increases to 0.31 m, approaching that of safety-
oriented methods. However, this improvement comes at the
cost of a higher timeout rate, suggesting that the robust
controller often becomes trapped in irrecoverable situations
rather than achieving task success.

These findings highlight several limitations of applying
high-level MPC as a stand-alone controller for safe locomo-
tion. First, the baselines lack efficient mechanisms to address
worst-case uncertainty, resulting in markedly lower safety
rates. While more advanced techniques exist, such as robust
multi-stage MPC [98] or tube MPC [99], they either impose
heavy online computational costs or require extensive offline
computation, which undermines their practical advantage over
our approach. Second, MPC performance is highly sensitive to
manual design choices, including cost weight tuning. Finally,
MPC often assumes privileged deployment knowledge, such
as access to analytical obstacle maps, which is difficult to
guarantee in practice and can be degraded by perception errors.
By contrast, our framework provides a principled and efficient
means of handling uncertainty during deployment, with the
only added cost being offline training.

We emphasize that our method is designed primarily as a
safety-filtering mechanism rather than a controller synthesis
tool. Rather than replacing controllers such as MPC, it serves
as a general safety layer capable of safeguarding any nominal
controller, including MPC. From another perspective, the
unfiltered PS + WTW controller can itself be interpreted as a
sampling-based MPC baseline using the simplified Dubins car
model. As shown in our main Results section, applying our
proposed safety filter yields substantial improvements over this
baseline.

D. Comparisons with a Low-level MPC-based Baseline

We compare our method with a low-level MPC controller
that simultaneously finds stable locomotion profile while
avoiding environmental obstacles. Accordingly, this section
details our baseline MPC controller, which is implemented
according to the principles articulated in [100].

min
u(·)

Φ
(
x(tf )

)
+

∫ tf

t0

ℓ
(
x(t), u(t), t

)
dt,

s.t. ẋ(t) = f
(
x(t), u(t), t

)
,

x(t0) = x0,

g
(
x(t), u(t), t

)
= 0,

h
(
x(t), u(t), t

)
≥ 0.

(27)

The controller seeks a continuous-time control u(·) defined
over the time horizon [t0, tf ] that minimizes the cost func-
tion while satisfying the system’s dynamics, initial state,
and both general equality and inequality constraints. Here,
we denote the system’s dynamics by ẋ(t), and we describe
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all equality and inequality constraints as g
(
x(t), u(t), t

)
and

h
(
x(t), u(t), t

)
. Our MPC controller employs a single rigid

body dynamic model with negligible leg mass, a common
approximation in legged locomotion MPC for real-time perfor-
mance. We define the system state x ∈ R24 and input u ∈ R12

as:

x = [ pTcom, ṗ
T
com, θ

T , ωT , pTfoot ]
T , u = [ fTfoot, v

T
foot ]

T

(28)
Where pcom ∈ R3, ṗcom ∈ R3 are base’s position and linear
velocity, θ ∈ R3,ω ∈ R3 are base’s ZYX-Euler angle and
angular velocity, pfoot ∈ R12 are foot’s position, and ffoot ∈
R12, vfoot ∈ R12 are foot’s contact force and velocity. The
cost function is formed with the quadratic penalty on both the
state tracking error (encouraging the robot towards the target
region while preserving stability) and the control inputs (to
minimize the control effort). We also added a cost term with
a quadratic barrier term derived from the signed distance field
of the environment, motivated by [101].

ℓc(x, t) =
µ

2

(
max{0, ε− h(xr)}

)2

(29)

Here, h(xr) is the signed distance from the body collision
sphere to the nearest obstacle, ε is the collision-margin
threshold, and µ is the barrier weight, which determines how
aggressively the controller should avoid obstacles. Assuming
privileged access to the environmental obstacle information,
this term imposes a soft penalty whenever the robot approaches
an obstacle. By treating obstacle avoidance as penalized de-
viations rather than hard constraints, the controller naturally
generates locomotion behavior with obstacle clearance. We
transform this continuous-time optimal control problem into
an NLP via direct multiple shooting in CasADi [96] and solve
it online with the SQP solver.

The MPC baseline is evaluated in the case-study environ-
ment shown in Figure 6 (b), where the robot must navigate
to the target region while avoiding the surrounding walls. The
same set of controller parameters was used in all experiments.
We ran 30 trials under two conditions:

• Nominal: The entire floor had the standard friction
coefficient of 1.0. In all 30 trials, the robot got stuck
between the walls and timed out after 60 seconds.

• Friction change: A middle floor patch (highlighted in
light blue in 11 (b)) with reduced floor friction coefficient.
In all 30 trials, the robot lost traction in the slippery
region and collided either with the wall or the ground.

The overlaid trajectory plot is shown in Figure 11. These
results show several limitations when applying low-level MPC
as an all-in-one controller for safe locomotion. First, coupling
all dynamics and collision-avoidance constraints into a single
short-horizon optimization problem makes the solver prone to
local minima, as shown in Figure 11 (a). Second, the MPC
baseline lacks mechanisms to guarantee safety under worst-
case dynamical uncertainty, as shown in Figure 11 (b). High
dynamics mismatch in the low-friction region leads to sys-
tematic safety violations. Finally, manual cost weight tuning
is required for different task setups, undermining scalability.

In contrast, our proposed framework explicitly accounts
for worst-case dynamic uncertainty with a complementary

Fig. 11: MPC baseline in the same environment from Figure 6
(b), there is a sudden drop in ground friction, indicated in blue.
In (a), the robot got stuck at the second wall and timed out.
In (b), the robot collides with the first wall due to a sudden
change in the ground friction.

safety layer, without forcing every constraint into the low-level
controller. Rather than viewing our method as a replacement
for MPC, we position it as a safety layer that can wrap
around any nominal locomotion controller to enforce safety
guarantees despite disturbances and modeling errors.
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TABLE VI: Simulation Environment Parameters

Payload Range (kg) Friction Range

Easy Medium Hard Easy Medium Hard
[0, 0] [−1, 1] [−1,−0.5] ∪ [0.5, 1] [1, 1] [0.5, 1.5] [0.5, 0.75] ∪ [1.25, 1.5]

TABLE VII: All Simulation Results (100 Trials)

Difficulty Controller Filter Success Rate ↑ Collision Rate ↓ Timeout Rate ↓ v̄ (m/s) ↑ r̄ ↓ q̄ (m) ↑

Easy

ABS-Agile

No Filter 0.89 0.11 0.00 2.12 0.00 0.44
ABS Framework 0.88 0.12 0.00 2.08 0.02 0.44
OCR \ DE 0.51 0.21 0.28 0.86 0.68 0.44
OCR \ C 0.88 0.12 0.00 1.77 0.26 0.46
OCR (ours) 0.95 0.05 0.00 1.24 0.60 0.56

PS + WTW

No Filter 0.80 0.20 0.00 1.46 0.00 0.44
OCR \ DE 0.85 0.15 0.00 0.84 0.62 0.43
OCR \ C 0.91 0.09 0.00 1.31 0.14 0.42
OCR (ours) 1.00 0.00 0.00 0.99 0.46 0.62

NVE + WTW

No Filter 0.25 0.75 0.00 1.82 0.00 0.36
OCR \ DE 0.22 0.78 0.00 1.23 0.50 0.40
OCR \ C 0.46 0.54 0.00 1.53 0.22 0.37
OCR (ours) 0.98 0.02 0.00 1.06 0.48 0.58

Medium

ABS-Agile

No Filter 0.83 0.17 0.00 2.12 0.00 0.43
ABS Framework 0.87 0.13 0.00 2.05 0.02 0.43
OCR \ DE 0.53 0.27 0.20 1.02 0.61 0.45
OCR \ C 0.84 0.16 0.00 1.74 0.27 0.44
OCR (ours) 0.93 0.07 0.00 1.27 0.57 0.55

PS + WTW

No Filter 0.81 0.19 0.00 1.42 0.00 0.46
OCR \ DE 0.81 0.19 0.00 0.86 0.61 0.44
OCR \ C 0.83 0.17 0.00 1.33 0.12 0.46
OCR (ours) 0.99 0.01 0.00 1.00 0.42 0.65

NVE + WTW

No Filter 0.25 0.75 0.00 1.79 0.00 0.39
OCR \ DE 0.22 0.78 0.00 1.11 0.56 0.40
OCR \ C 0.42 0.58 0.00 1.47 0.22 0.39
OCR (ours) 0.97 0.03 0.00 1.05 0.50 0.57

Hard

ABS-Agile

No Filter 0.75 0.25 0.00 2.10 0.00 0.41
ABS Framework 0.80 0.20 0.00 2.03 0.03 0.41
OCR \ DE 0.40 0.35 0.25 0.98 0.62 0.41
OCR \ C 0.81 0.19 0.00 1.70 0.28 0.41
OCR (ours) 0.91 0.09 0.00 1.22 0.59 0.58

PS + WTW

No Filter 0.72 0.28 0.00 1.36 0.00 0.43
Robust CBF 0.74 0.24 0.02 0.43 N/A 0.40
OCR \ DE 0.78 0.22 0.00 0.84 0.61 0.42
OCR \ C 0.90 0.09 0.01 1.21 0.18 0.44
OCR w/ EKF 0.96 0.01 0.03 0.88 0.39 0.66
OCR (ours) 1.00 0.00 0.00 0.97 0.42 0.66

NVE + WTW

No Filter 0.20 0.80 0.00 1.70 0.00 0.31
OCR \ DE 0.21 0.79 0.00 0.93 0.61 0.37
OCR \ C 0.45 0.55 0.00 1.32 0.28 0.39
OCR (ours) 0.91 0.08 0.01 1.04 0.47 0.62

HL-MPC + WTW No Filter 0.49 0.51 0.00 1.47 0.00 0.03

RHL-MPC + WTW No Filter 0.48 0.44 0.08 0.74 0.00 0.31
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TABLE VIII: All Hardware Results (10 Trials)

Condition Controller Filter # Successes ↑ # Collisions ↓ # Timeouts ↓ v̄ (m/s) ↑ r̄ ↓ q̄ (m) ↑

Normal

ABS-Agile
No Filter 9 1 0 1.67 0.00 0.29
ABS 9 1 0 1.59 0.02 0.29
OCR (ours) 10 0 0 0.94 0.64 0.43

PS + WTW No Filter 5 5 0 1.53 0.00 0.32
OCR (ours) 9 1 0 0.80 0.58 0.61

NVE + WTW No Filter 0 10 0 N/A N/A N/A
OCR (ours) 9 0 1 0.77 0.61 0.55

PS + MPC No Filter 5 5 0 1.55 0.00 0.33
OCR (ours) 10 0 0 0.81 0.54 0.58

NVE + MPC No Filter 0 10 0 N/A N/A N/A
OCR (ours) 9 0 1 0.93 0.56 0.54

Slippery

ABS-Agile
No Filter 1 9 0 1.38 0.00 0.33
ABS 2 8 0 1.49 0.03 0.22
OCR (ours) 8 1 1 0.90 0.60 0.38

PS + WTW No Filter 1 9 0 1.04 0.00 0.52
OCR (ours) 8 2 0 0.74 0.65 0.45

NVE + WTW No Filter 0 10 0 N/A N/A N/A
OCR (ours) 8 2 0 0.61 0.68 0.39

PS + MPC No Filter 0 10 0 N/A N/A N/A
OCR (ours) 9 1 0 0.80 0.54 0.56

NVE + MPC No Filter 0 10 0 N/A N/A N/A
OCR (ours) 7 3 0 0.82 0.57 0.32
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